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• isobutanol on a randomly 
silanized silicon wafer

• hydrogen on disordered 
Cesium substrate



fracture between 2 plexiglass plates (C) Stephano Santucci 
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what is avalanche-
size distribution ?



The model 

formulas
u�w = w
F(w)F(0) u
ˆ
|w|

h(x) = u(x)�w

Z(� ) :=
� �

0
dS p(S)

⇥
e�S�1

⇤
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Model and Observables

x

Displacement field x ⌃ R �⌅ u(x) ⌃ R

Elastic energy: Hel =
1
2

� ddk
2⌅

|ũk|2 ⇥k +
�

x

m2

2
[u(x)�w]2

for contact angle ⇧ = 90⇥: ⇥k ⇤
⌥

k2 +⇤2�⇤
⇤�1 = m�2 kapillary length (instead of ⇥k = k2)

Disorder energy HDO =
�

ddxV (x,u(x))

with correlations V (x,u)V (x⇧,u⇧) = � d(x� x⇧)R(u�u⇧)
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w = vt



Functional renormalization group (FRG)Functional renormalization group (FRG)
(D. Fisher 1986)

H [u]
T

=
1

2T

n

⇥
�=1

⇤⇧

k
⇤k|ũ�

k |2 +
⇧

x
m2(u�(x)�w)2

⌅

� 1
2T 2

⇧

x

n

⇥
�,⇥=1

R
�
u�(x)�u⇥(x)

⇥

Functional renormalization group equation (FRG) for the disorder
correlator R(u) at 1-loop order:

�md
dm

R(u) = (⇤ �4⌅ )R(u)+⌅ uR⇥(u)+
1
2

R⇥⇥(u)2�R⇥⇥(u)R⇥⇥(0)

Solution for force-force correlator �R⇥⇥(u):

renormalization

uu

!R’’(u) !R’’(u)

Cusp: R⇥⇥⇥⇥(0) = � appears after finite RG-time (at Larkin-length)
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u�w = w
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formulas
u�w = w
F(w)F(0) u
ˆ
|w|
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Why is a cusp necessary?
. . . calculate effective action for single degree of freedom. . .
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(�⇤tuxt �⇥2
x +m2

)uxt �F(x,uxt) = 0

(�⇤tuxt �⇥2
x +m2

)u̇xt �⇤tF(x,uxt) = 0

[F(w)�F(0)]2 = ⇥
shock

|w|⇧ ⌅⇤ ⌃
p
shock

�
S2⇥

�(w) = F(w)F(0)
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(�⇤tuxt ��2
x +m2

)uxt �F(x,uxt) = 0

(�⇤tuxt ��2
x +m2

)u̇xt �⇤tF(x,uxt) = 0

[F(w)�F(0)]2 = ⇥
shock
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p
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�
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Measuring the cusp = effective action

1

�(w � w�) = m4Ld [uw � w] [uw� � w�]

Δ = renormalized disorder correlator 

PLD+KW+A. Middleton

Δ’Δ

0 1 2 3 4
w  (w/4 for RB)

-0.2

0

0.2

0.4

0.6

0.8

1
   

(w
) (w), 1-loop RF

RF, d=3, L=16
(w), 1-loop RB

RB, d=2, L=32

     
 

0 0.4 0.8
w

-0.8

-0.6

(w)
RF, d=3,
L=16

RF

RB

Δ

Δ



The renormalized force-force correlator 

hydrogen/cesium
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Slope at the cusp and avalanche size moments
f f+df

Avalanche
 size

f f+df

close to

depinning
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FRG-calculation
calculate the generating function Z(� ) of avalanche-sizes S:

Z(� ) =
1
⇧S⌃

�
⇧e�S⌃�1�� ⇧S⌃

⇥

e� [u(w)�w�u(0)]�1 = Z(� )w+O(w2) for w > 0 .

Z(� ) = ⇥
�⌅(0+)

�
�

��⇥

⌅
⌅

⌅
⌅

⌅
⌅⌅⌃

⇤
⇤
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loop 1
k2+m2

�(w)��(0)⇤ �⌅(0+)w+ . . .

Recursion Relation:

Z(� ) = � ��⌅(0+)Z(� )2
⌃ ⇧⌅ ⌥
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+
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n⇥3
(n+1)2n�2

⇤

k

[��⌅(0+)Z(� )]n

(k2 +1)n
⌃ ⇧⌅ ⌥

loops with n outgoing legs

,
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Avalanche distribution
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Velocity distribution in an avalanche 
classical Langevin equation

�⇥tu(x, t) = �2u(x, t)+m2 [w�u(x, t)]+F(x,u(x, t))

6

this is now a theory of the velocity, not of the position:
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FIG. 1: Schematic plot of the instantaneous velocity (divided
by v) as a function of vt for di�erent v. The area under the
curve is the avalanche size hence is constant as v � 0+. The
quasi-static avalanche positions wi are indicated.

Sm ⇤ m�(d+�) is the large-scale cuto⇥ of P (S). Here we
study the dynamics inside these avalanches, which occur
for small v on a time scale ⌥m ⇤ Lz

m ⌅ �w/v, where
�w is the typical separation of avalanches in the same
space region, and z the dynamical exponent. Hence we
are considering small enough v so that avalanches remain
well separated, a condition equivalent to Lm ⌅ ⇧v, where
⇧v is the standard critical correlation length [10, 11] near
depinning (for m = 0). This is illustrated on figure 1.

The information about the dynamics in an avalanche
is contained in the n-times cumulants Cn = u̇t1 . . . u̇tn

c
,

n ⇥ 2 (with u̇t = 0). In the limit v ⇧ 0+ the prod-
uct u̇t1 . . . u̇tn vanishes unless all times are inside an
avalanche. The probability that exactly one avalanche
occurs in a time interval T < �w/v is ⌃0vT , with
⌃0 = Ld/⌃S⌥ the avalanche density per unit w. Cn

is thus O(v), rather than O(vn), the hallmark of a
non-smooth motion. In addition, Cn obeys the sum
rule Lnd

⇥
[�T/2,T/2]n dt1 . . . dtn u̇t1 . . . u̇tn = ⌃0vT ⌃Sn⌥ +

O(v2). It can be computed perturbatively in the (renor-
malized) disorder. For n = 2 and to lowest order one
finds

u̇t1 u̇t2
c
= �L�d�⇥(0+)

v

m2⇤
e�

m2

� |t1�t2| (3)

where here and below ⇤ is the renormalized friction [16].
Integrating over time, one recovers (2).

To obtain all moments at once, as well as the velocity
distribution, we now compute the generating function

Z[⌅] = L�d�ve
�
xt ⇥xt(v+u̇xt)

���
v=0+

. (4)

The average over disorder (and initial conditions) is ob-

tained from the dynamical action S = S0 + Sdis of (1):

S0 =

⇤

xt
ũxt(⇤�t ��2

x +m2)u̇xt (5)

Sdis = �1

2

⇤

xtt�
ũxtũxt��t�t��(v(t� t⇥) + uxt � uxt�) (6)

This yields

Z[⌅] = L�d�v

⇤
D[u̇]D[ũ] e�S+

�
xt ⇥xt(v+u̇xt)

���
v=0+

(7)

with Z[0] = 0. We write

�t�t��(v(t� t⇥) + uxt � uxt�)

= (v + u̇xt)�t��
⇥(v(t� t⇥) + uxt � uxt�)

= (v + u̇xt)�
⇥(0+)�t�sgn(t� t⇥) + . . . (8)

where we have used that the interface is only moving
forward (Middleton theorem [18]). We can thus rewrite
the disorder term as S = Stree

dis + . . ., where

Stree
dis = �⇥(0+)

⇤

xt
ũxtũxt(v + u̇xt) (9)

is the so-called tree-level or mean-field action [16]. The
terms neglected are O(�⇥⇥(0+)) and higher derivatives,
and we have shown that they contribute only to O(⇥) to
Z[⌅], hence can be neglected at tree level.
We now study the tree approximation for Z[⌅], i.e. (7)

with Sdis replaced by (9). Thus the highly non-linear ac-
tion (6) has been reduced to a much simpler cubic theory!
Even more remarkably, u̇xt appears only linearly in (9),
and viewing u̇ as a response field, the tree level theory is
equivalent to the following non-linear equation:

(⇤�t +�2
x �m2)ũxt ��⇥(0+)ũ2

xt + ⌅xt = 0 (10)

We denote ũ⇥
xt the solution of this equation for a given

source ⌅xt. Performing the derivative w.r.t v in (7) gives

Z[⌅] = L�d

⇤

xt
⌅xt ��⇥(0+)(ũ⇥

xt)
2 (11)

= L�d

⇤

xt
(�⇤�t ��2

x +m2)ũ⇥
xt = m2L�d

⇤

xt
ũ⇥
xt

where we have used equation (10) and, in the last equal-
ity, assumed that ũ⇥ vanishes at large t and x. To an-
alyze the result, it is convenient to use dimensionless
equations, replacing x ⇧ x/m, L ⇧ L/m, t ⇧ ⌥mt,
v ⇧ vvm, ⌅ ⇧ ⌅/Sm and ũxt ⇧ ũxt/m2Sm, where
vm = Smmd/⌥m, and ⌥m = ⇤/m2. From now on we
use these units, and consider the center-of-mass velocity,
thus choosing ⌅xt = ⌅t uniform.
The 1-time probability at time t = 0 is given by ⌅t =

⌅�(t) through its Laplace transform

Z̃(⌅) = L�d�veL
d⇥(v+u̇)

���
v=0+

. (12)

Disorder Vertex:

2

Τ

wi wi"1

0 10 20 30 40

w#vt

2

4

6

8

10

12

14

u
$
t!v

FIG. 1: Schematic plot of the instantaneous velocity (divided
by v) as a function of vt for di�erent v. The area under the
curve is the avalanche size hence is constant as v � 0+. The
quasi-static avalanche positions wi are indicated.

Sm ⇤ m�(d+�) is the large-scale cuto⇥ of P (S). Here we
study the dynamics inside these avalanches, which occur
for small v on a time scale ⌥m ⇤ Lz

m ⌅ �w/v, where
�w is the typical separation of avalanches in the same
space region, and z the dynamical exponent. Hence we
are considering small enough v so that avalanches remain
well separated, a condition equivalent to Lm ⌅ ⇧v, where
⇧v is the standard critical correlation length [10, 11] near
depinning (for m = 0). This is illustrated on figure 1.

The information about the dynamics in an avalanche
is contained in the n-times cumulants Cn = u̇t1 . . . u̇tn
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uct u̇t1 . . . u̇tn vanishes unless all times are inside an
avalanche. The probability that exactly one avalanche
occurs in a time interval T < �w/v is ⌃0vT , with
⌃0 = Ld/⌃S⌥ the avalanche density per unit w. Cn

is thus O(v), rather than O(vn), the hallmark of a
non-smooth motion. In addition, Cn obeys the sum
rule Lnd
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Z[⌅], hence can be neglected at tree level.
We now study the tree approximation for Z[⌅], i.e. (7)

with Sdis replaced by (9). Thus the highly non-linear ac-
tion (6) has been reduced to a much simpler cubic theory!
Even more remarkably, u̇xt appears only linearly in (9),
and viewing u̇ as a response field, the tree level theory is
equivalent to the following non-linear equation:
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We denote ũ⇥
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source ⌅xt. Performing the derivative w.r.t v in (7) gives

Z[⌅] = L�d

⇤

xt
⌅xt ��⇥(0+)(ũ⇥

xt)
2 (11)

= L�d

⇤

xt
(�⇤�t ��2

x +m2)ũ⇥
xt = m2L�d

⇤

xt
ũ⇥
xt

where we have used equation (10) and, in the last equal-
ity, assumed that ũ⇥ vanishes at large t and x. To an-
alyze the result, it is convenient to use dimensionless
equations, replacing x ⇧ x/m, L ⇧ L/m, t ⇧ ⌥mt,
v ⇧ vvm, ⌅ ⇧ ⌅/Sm and ũxt ⇧ ũxt/m2Sm, where
vm = Smmd/⌥m, and ⌥m = ⇤/m2. From now on we
use these units, and consider the center-of-mass velocity,
thus choosing ⌅xt = ⌅t uniform.
The 1-time probability at time t = 0 is given by ⌅t =

⌅�(t) through its Laplace transform

Z̃(⌅) = L�d�veL
d⇥(v+u̇)

���
v=0+

. (12)

simplifies to

!!! simple local cubic theory !!!

Why is a cusp necessary?
P(S) P(Sf) P(T ) P(u̇) P(u̇f)

S

�t
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�tf
f T

�a
u̇

�a
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�af
f
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z
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d+z tf = 2� 1

df+z a = 1+ d�1+z
z
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lim
m!0
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d f
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Z
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ũ(x, t)

h
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t

u̇(x, t)�—2
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∂
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Avalanche Instanton

3

u̇ = u̇t=0 and the notation Z̃ reminds us that we use
dimensionless units. ũxt = ũt and we need to solve

(⌥t � 1)ũt + ũ2
t = �⇤�(t) (13)

with ũt ⇧ 0 at t = ±⌃:

ũt =
⇤

⇤+ (1� ⇤)e�t
⇥(�t) (14)

Inserting into (12) gives

Z̃(⇤) =

⌘

t
ũt = � ln(1� ⇤) . (15)

Calling ⌃i the duration of the i-th avalanche out ofN , and
defining ⌥⌃� := 1

N

�
i ⌃i the mean duration, the probabil-

ity pa that t = 0 belongs to an avalanche is pa = ⌅0v⌥⌃�.
Hence the total 1-time velocity probability is P (u̇) =
(1� pa)�(v + u̇) + paP̃ (u̇) where P̃ (u̇) is the probability
given that t = 0 belongs to an avalanche. Both P̃ and P
are normalized to unity. One notes the two (always) ex-
act relations ⌥u̇�P = 0, pa⌥u̇+v�P̃ = v. Hence for v = 0+

one has ⌅0⌥⌃�⌥u̇�P̃ = 1 and, in dimensionfull units Z(⇤) =
1

mdvm
Z̃(mdvm⇤) = L�d⌅0⌥⌃�

�
du̇ P̃ (u̇)(eL

d�u̇ � 1). We
thus obtain, in the slow driving limit, the instantaneous
velocity distribution in the range v0 ⌅ u̇ ⇥ ṽm (v0 being
a small velocity cuto⇥):

P̃ (u̇) =
1

⌅0⌥⌃�ṽ2m
p
⇧ u̇

ṽm

⌃
, p(x) =

1

x
e�x . (16)

We defined ṽm = (mL)�dvm = L�dSm/⌃m. Hence
⌥u̇�P̃ ⇤ ṽm/ ln( ṽmv0 ). Note that (i) p(x) is not a prob-

ability, but is normalized by
�
dxx p(x) = 1 (ii) the

quantity which is distributed according to p(x) is x =
⌃m
�
x u̇xt/Sm, which does not contain the factor L�d.

Similarly one obtains the n-time distribution of
the center-of-mass velocity solving (13) with ⇤t =�n

j=1 ⇤j�(t� tj), noting zij := 1� e�|ti�tj |/⇤m

Z̃n(⇤1, . . . ,⇤n) = � ln

 

↵
✏

�⇥{1,...,n}

⇣

i⌅�

[�⇤i]
⇣

{i,j}⇥�,i<j

zij

⌦

�

(17)
For n = 2 one finds Z̃2 = � ln(1� ⇤1 � ⇤2 + ⇤1⇤2z) with
z = 1� e�|t2�t1|/⇤m . From this we obtain (i) the proba-
bility q12 = vq⇤12 that both t1 and t2 belong to the same
avalanche and the velocity distribution P̃ conditioned to
this event:

q⇤12P̃ (u̇1, u̇2) =
1

ṽ3m
p
⇧ u̇1

ṽm
,
u̇2

ṽm

⌃
(18)

p(v1, v2) =
e
� t

2�
v1+v2
1�e�t

(1� e�t)
 
v1v2

I1

⌥
2 e�t/2 v1v2

1� e�t

�
(19)

with t = |t2 � t1|/⌃m, q⇤12ṽm = ln(1/z), and I1(x) is the
Bessel-I function of the first kind. The probability that
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FIG. 2: “Pulse-shape”: The normalized velocity at time t
in an avalanche of duration � for � � �m (lower curve) to
� ⇥ �m (upper curve).

t1 but not t2 belongs to an avalanche is

q⇤1P̃1(u̇1) =
1

ṽ2m
p
⇧ u̇1

ṽm

⌃
, p(u̇1) =

e�u̇1/z

u̇1
(20)

with p⇤a = q⇤1 + q⇤12. Since the probability that there
exists an avalanche starting in [t1, t1+dt1] and ending in
[t2, t2+dt2] is �dt1dt2⌥t1⌥t2q12 we obtain the distribution
of durations ⌃ as

P (⌃) =
1

⌅0ṽm⌃2m

e�⇤/⇤m

(1� e�⇤/⇤m)2
. (21)

For small durations ⌃ ⌅ ⌃m, P (⌃) ⇤ 1
⇥0ṽm⇤2 , cut o⇥ at

⌃ ⇤ ⌃0. This gives ⌥⌃� = 1
⇥0ṽm

ln( ⇤m⇤0 ) in good agree-

ment with the above, using ln( ⇤m⇤0 ) ⇤ ln( ṽmv0 ). Note that

q⇤12P̃ (0+, 0+) is proportional to the probability that an
avalanche starts at t1 and ends at t2.
The “shape” of an avalanche with duration ⌃ can then

be extracted from the probabilities at 3 times (t1, t2, t3) =
(0, t, ⌃) setting u̇1 = u̇3 = 0+. From the generating func-
tion (17) for 3 times, the probability distribution for the
intermediate-time velocity is P (u̇2) = b2u̇2e�u̇2b, with
ṽmb := 1

z12
+ 1

z23
� 1 resulting in the average “shape”

u̇2 =
2

b
= ṽm

4 sinh
�

t
2⇤m

⇥
sinh

�
⇤

2⇤m

⇤
1� t

⇤

⌅⇥

sinh
�

⇤
2⇤m

⇥ . (22)

This interpolates from a parabola for small ⌃ ⌅ ⌃m to a
flat shape for the longest avalanches (see Fig 2.). This
result holds for an interface at or above its upper critical
dimension, which previously was used [7] on the basis of
the ABBM model.
We now clarify the relation to the phenomenologi-

cal ABBM theory [8]. The latter models the inter-
face as a single point driven in a long-range correlated
random-force landscape, F (u), with Brownian statistics.
It amounts to suppressing the space dependence in (1),
hence corresponds in our general model to the special
case d = 0 and �0(0) � �0(u) = ⇧|u|. The instanta-
neous velocity v = u̇t+v satisfies the stochastic equation
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FIG. 2: “Pulse-shape”: The normalized velocity at time t
in an avalanche of duration � for � � �m (lower curve) to
� ⇥ �m (upper curve).
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with p⇤a = q⇤1 + q⇤12. Since the probability that there
exists an avalanche starting in [t1, t1+dt1] and ending in
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of durations ⌃ as
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avalanche starts at t1 and ends at t2.
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be extracted from the probabilities at 3 times (t1, t2, t3) =
(0, t, ⌃) setting u̇1 = u̇3 = 0+. From the generating func-
tion (17) for 3 times, the probability distribution for the
intermediate-time velocity is P (u̇2) = b2u̇2e�u̇2b, with
ṽmb := 1
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� 1 resulting in the average “shape”

u̇2 =
2

b
= ṽm
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This interpolates from a parabola for small ⌃ ⌅ ⌃m to a
flat shape for the longest avalanches (see Fig 2.). This
result holds for an interface at or above its upper critical
dimension, which previously was used [7] on the basis of
the ABBM model.
We now clarify the relation to the phenomenologi-

cal ABBM theory [8]. The latter models the inter-
face as a single point driven in a long-range correlated
random-force landscape, F (u), with Brownian statistics.
It amounts to suppressing the space dependence in (1),
hence corresponds in our general model to the special
case d = 0 and �0(0) � �0(u) = ⇧|u|. The instanta-
neous velocity v = u̇t+v satisfies the stochastic equation

If then the instanton equation is

Model and Observables

⇥⌅tu(x, t) = ��H [u(t)]
�u(t)

= �2u(x, t)+m2 [w�u(x, t)]�⌅uV (x,u(x, t))

⇤ (x, t) = ⇤� (t)

2

Solution

Model and Observables

⇥⌅tu(x, t) = ��H [u(t)]
�u(t)

= �2u(x, t)+m2 [w�u(x, t)]�⌅uV (x,u(x, t))

⇤ (x, t) = ⇤� (t)

Ztree(⇤ ) =
⇥
e⇤ u̇(t)�1

⇤���
t=0

=
⌅

t<0
ũt =� ln(1�⇤ )

Ptree(u̇) =
e�u̇

u̇

2

higher-point functions also possible. 

MF
= ABBM  
for COM

observables



Scaling laws

3

P(S) P(S⌅) P(T ) P(u̇) P(u̇⌅)

S�⇤ S
�⇤⇥
⌅ T�� u̇�a u̇

�a⇥
⌅

short-ranged elasticity (SR) ⌅ = 2� 2
d+⇥ ⌅⌅ = 2� 2

d⇥+⇥ � = 1 + d�2+⇥
z a = 2� 2

d+⇥�z a⌅ = 2� 2
d⇥+⇥�z

long-ranged elasticity (LR) ⌅ = 2� 1
d+⇥ ⌅⌅ = 2� 1

d⇥+⇥ � = 1 + d�1+⇥
z a = 2� 1

d+⇥�z a⌅ = 2� 1
d⇥+⇥�z

TABLE I: Scaling relations

d ⇤ z ⌅ ⌅⌅ � a a⌅ ⇥

1 1.25 1.433 1.11 0.4 1.17 �0.45 12.9 1.57

SR 2 0.75 1.56 1.27 �0.67 1.48 0.32 4.47 1.76

3 0.34 1.74 1.40 �3.88 1.77 0.75 3.43 1.92

LR 1 0.39 0.74 1.28 �0.56 1.53 0.46 4.86 1.88

TABLE II: Critical exponents obtained via the scaling relations. For
the localized avalanche exponents we consider a point, d⌅ = 0.

pendent renormalizations, namely for ⇤ and z; thus such an
additional relation is suggestive. Recently, this missing re-
lation was found [29]. The key-observation is that ũxt, and
consequently Z(⌅) are not renormalized.

We now consider some cases of interest: For the static
avalanche-size distribution, ũxt is independent of time,⌥
xt ũxtm2u̇xt dimensionless, and thus ũxt ⇥ md�2+⇤ . On

the other hand,
�

dS(e⌅S � 1)P(S) = Z(⌅) ⇥ ũxt , (13)

and using that P(S) ⇥ S�⌃ , and S ⇥ m�d�⇤ implies
⌅⌃�1 ⇥ S1�⌃ ⇥ m�(d+⇤)(1�⌃). Equating both sides yields

P(S) ⇥S⇥1 S�⌃ , ⇧ = 2� 2

d+ ⇤
. (14)

This result is well known, and was first given in [12]. Con-
sider now the stationary velocity distribution. For the latter,
we have

�
du̇(e⌅u̇ � 1)P(u̇) ⇥

�

t
ũxt , (15)

with an additional time-integral over the time where the
avalanche was triggered. With the same reasoning as above,

we arrive at

P(u̇) ⇥u̇⇥1 u̇�a , a = 2� 2

d+ ⇤ � z
. (16)

Another relation is obtained from the normalization condition⌥
dS P(S) =

⌥
dT P(T ); it yields [17]

P(T ) ⇥T⇥1 T�� , � = 1 +
d� 2 + ⇤

z
. (17)

The method can easily be generalized to local avalanche ob-
servables, as S⌥ :=

⌥
Sx⌃(x), where ⌃(x) is localized on a

d⌥-dimensional subspace. This yields for the local avalanche-
size distribution

P(S⌥) ⇥S⇥⇥1 S
�⌃⇥
x , ⇧ = 2� 2

d⌥ + ⇤
. (18)

Equivalently, for the local velocity distribution we obtain

P(u̇⌥) ⇥u̇⇥⇥1 u̇
�a⇥
⌥ , a⌥ = 2� 2

d⌥ + ⇤ � z
. (19)

Since S ⇥ m�d+⇤ , and T ⇥ m�z , we further obtain

S ⇥S⇥1 T ⇥ , ⇥ =
d+ ⇤

z
. (20)

For LR-elasticity, the numerators in Eqs. (14), (16), (18) and
(19) change from 2 to 1. This is summarized on table I.

The shape function: The shape of an avalanche can also
be obtained from our field theory. The calculation is more
involved, and we only plot the necessary diagrams on figure
1. The general expressions are quite lengthy (up to a page),
and depend on its duration. Here we only give the result for
short durations:

⇧
u̇

�
x =

t

T

⇥⌃
= N

 
Tx(1�x)

⌦1+ 2�
dc

exp

�
8�

dc
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�
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2
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+

x log(2x)

x� 1
+

(x+ 1) log(x+ 1)

2(1� x)

⌅⇥
, (21)

with normalization NSR = 2 exp(�2 [⇥E�1�2 log2(2)� ⇧2

3 ]),
NLR = 2 exp(�[⇥E � 2 � 2 log2(2) � ⇧2

3 ]) and dc = 4 for
SR and dc = 2 for LR elasticity. *** Check the shift for

LR*** While this result is correct to first order in � = �(⌥�
⇤)/3, we have chosen to give an exponentiated form, for two
reasons: First of all, this converts ln(x[1 � x]) into a power-
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z
. (17)

The method can easily be generalized to local avalanche ob-
servables, as S⌥ :=

⌥
Sx⌃(x), where ⌃(x) is localized on a

d⌥-dimensional subspace. This yields for the local avalanche-
size distribution

P(S⌥) ⇥S⇥⇥1 S
�⌃⇥
x , ⇧ = 2� 2

d⌥ + ⇤
. (18)

Equivalently, for the local velocity distribution we obtain

P(u̇⌥) ⇥u̇⇥⇥1 u̇
�a⇥
⌥ , a⌥ = 2� 2

d⌥ + ⇤ � z
. (19)

Since S ⇥ m�d+⇤ , and T ⇥ m�z , we further obtain

S ⇥S⇥1 T ⇥ , ⇥ =
d+ ⇤

z
. (20)

For LR-elasticity, the numerators in Eqs. (14), (16), (18) and
(19) change from 2 to 1. This is summarized on table I.

The shape function: The shape of an avalanche can also
be obtained from our field theory. The calculation is more
involved, and we only plot the necessary diagrams on figure
1. The general expressions are quite lengthy (up to a page),
and depend on its duration. Here we only give the result for
short durations:

⇧
u̇

�
x =

t

T

⇥⌃
= N

 
Tx(1�x)

⌦1+ 2�
dc

exp

�
8�

dc

⇤
Li2(1� x)� Li2

�
1� x

2

⇥
+

x log(2x)

x� 1
+

(x+ 1) log(x+ 1)

2(1� x)

⌅⇥
, (21)

with normalization NSR = 2 exp(�2 [⇥E�1�2 log2(2)� ⇧2

3 ]),
NLR = 2 exp(�[⇥E � 2 � 2 log2(2) � ⇧2

3 ]) and dc = 4 for
SR and dc = 2 for LR elasticity. *** Check the shift for

LR*** While this result is correct to first order in � = �(⌥�
⇤)/3, we have chosen to give an exponentiated form, for two
reasons: First of all, this converts ln(x[1 � x]) into a power-

Why is a cusp necessary?
P(S) P(S⇥) P(T ) P(u̇) P(u̇⇥)

S�⇤ S�⇤⇥
⇥ T�� u̇�a u̇�a⇥

⇥

SR ⇤ = 2� 2
d+⌅ ⇤⇥ = 2� 2

d⇥+⌅ � = 1+ d�2+⌅
z a= 2� 2

d+⌅�z a⇥ = 2� 2
d⇥+⌅�z

LR ⇤ = 2� 1
d+⌅ ⇤⇥ = 2� 1

d⇥+⌅ � = 1+ d�1+⌅
z a= 2� 1

d+⌅�z a⇥ = 2� 1
d⇥+⌅�z

4

suppose that there is a small-m limit of response to kick

This implies a plethora of scaling laws:

3

P(S) P(S⌅) P(T ) P(u̇) P(u̇⌅)

S�⇤ S
�⇤⇥
⌅ T�� u̇�a u̇

�a⇥
⌅

short-ranged elasticity (SR) ⌅ = 2� 2
d+⇥ ⌅⌅ = 2� 2

d⇥+⇥ � = 1 + d�2+⇥
z a = 2� 2

d+⇥�z a⌅ = 2� 2
d⇥+⇥�z

long-ranged elasticity (LR) ⌅ = 2� 1
d+⇥ ⌅⌅ = 2� 1

d⇥+⇥ � = 1 + d�1+⇥
z a = 2� 1

d+⇥�z a⌅ = 2� 1
d⇥+⇥�z

TABLE I: Scaling relations

d ⇤ z ⌅ ⌅⌅ � a a⌅ ⇥

1 1.25 1.433 1.11 0.4 1.17 �0.45 12.9 1.57

SR 2 0.75 1.56 1.27 �0.67 1.48 0.32 4.47 1.76

3 0.34 1.74 1.40 �3.88 1.77 0.75 3.43 1.92

LR 1 0.39 0.74 1.28 �0.56 1.53 0.46 4.86 1.88

TABLE II: Critical exponents obtained via the scaling relations. For
the localized avalanche exponents we consider a point, d⌅ = 0.

pendent renormalizations, namely for ⇤ and z; thus such an
additional relation is suggestive. Recently, this missing re-
lation was found [29]. The key-observation is that ũxt, and
consequently Z(⌅) are not renormalized.

We now consider some cases of interest: For the static
avalanche-size distribution, ũxt is independent of time,⌥
xt ũxtm2u̇xt dimensionless, and thus ũxt ⇥ md�2+⇤ . On

the other hand,
�

dS(e⌅S � 1)P(S) = Z(⌅) ⇥ ũxt , (13)

and using that P(S) ⇥ S�⌃ , and S ⇥ m�d�⇤ implies
⌅⌃�1 ⇥ S1�⌃ ⇥ m�(d+⇤)(1�⌃). Equating both sides yields

P(S) ⇥S⇥1 S�⌃ , ⇧ = 2� 2

d+ ⇤
. (14)

This result is well known, and was first given in [12]. Con-
sider now the stationary velocity distribution. For the latter,
we have

�
du̇(e⌅u̇ � 1)P(u̇) ⇥

�

t
ũxt , (15)

with an additional time-integral over the time where the
avalanche was triggered. With the same reasoning as above,

we arrive at

P(u̇) ⇥u̇⇥1 u̇�a , a = 2� 2

d+ ⇤ � z
. (16)

Another relation is obtained from the normalization condition⌥
dS P(S) =

⌥
dT P(T ); it yields [17]

P(T ) ⇥T⇥1 T�� , � = 1 +
d� 2 + ⇤

z
. (17)

The method can easily be generalized to local avalanche ob-
servables, as S⌥ :=

⌥
Sx⌃(x), where ⌃(x) is localized on a

d⌥-dimensional subspace. This yields for the local avalanche-
size distribution

P(S⌥) ⇥S⇥⇥1 S
�⌃⇥
x , ⇧ = 2� 2

d⌥ + ⇤
. (18)

Equivalently, for the local velocity distribution we obtain

P(u̇⌥) ⇥u̇⇥⇥1 u̇
�a⇥
⌥ , a⌥ = 2� 2

d⌥ + ⇤ � z
. (19)

Since S ⇥ m�d+⇤ , and T ⇥ m�z , we further obtain

S ⇥S⇥1 T ⇥ , ⇥ =
d+ ⇤

z
. (20)

For LR-elasticity, the numerators in Eqs. (14), (16), (18) and
(19) change from 2 to 1. This is summarized on table I.

The shape function: The shape of an avalanche can also
be obtained from our field theory. The calculation is more
involved, and we only plot the necessary diagrams on figure
1. The general expressions are quite lengthy (up to a page),
and depend on its duration. Here we only give the result for
short durations:

⇧
u̇

�
x =

t

T

⇥⌃
= N

 
Tx(1�x)

⌦1+ 2�
dc

exp

�
8�

dc

⇤
Li2(1� x)� Li2

�
1� x

2

⇥
+

x log(2x)

x� 1
+

(x+ 1) log(x+ 1)

2(1� x)

⌅⇥
, (21)

with normalization NSR = 2 exp(�2 [⇥E�1�2 log2(2)� ⇧2

3 ]),
NLR = 2 exp(�[⇥E � 2 � 2 log2(2) � ⇧2

3 ]) and dc = 4 for
SR and dc = 2 for LR elasticity. *** Check the shift for

LR*** While this result is correct to first order in � = �(⌥�
⇤)/3, we have chosen to give an exponentiated form, for two
reasons: First of all, this converts ln(x[1 � x]) into a power-

Why is a cusp necessary?
P(S) P(Sf) P(T ) P(u̇) P(u̇f)

S

�t
S

�tf
f T

�a
u̇

�a
u̇

�af
f

SR t = 2� 2
d+z tf = 2� 2

df+z a = 1+ d�2+z
z

a= 2� 2
d+z�z

af = 2� 2
df+z�z

LR t = 2� 1
d+z tf = 2� 1

df+z a = 1+ d�1+z
z

a= 2� 1
d+z�z

af = 2� 1
df+z�z

lim
m!0

du(x, t)

d f

= finite , ũ(x, t) unrenormalized

4
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FIG. 3.3: Main plot: vP (v) as a function of v for � = 3. Inset:
log-log plot of P (v) as a function of v. Resommation formula (3.61)
was used. fig:Pv

transform (3.48) becomes a compact and simple cut-integral

⇤P (v) = �
⌅�

1

d⌥

e�v

⌥

 2⇥E + 2 ln(ln⌃) +
⌅↵

j=1

bj(ln⌃)j�1

�(j)

�

⌦

(3.55)delta-P-v

However, this series also diverges. Therefore choose jmax as
cutoff, by defining

⇤P (v) = ⇤Pser(v) + ⇤Pcut(v) (3.56)

⇤Pcut(v) = �
⌅�

1

d⌥

e�v

⌥

 2⇥E + 2 ln(ln⌃) +
jmax↵

j=1

bj(ln⌃)j�1

�(j)

�

⌦

(3.57)delta-P-magic

The coefficients ãn are what remains of an after subtracting
their asymptotic behavior,

ãn := an + 2
lnn

n
�

jmax↵

j=1

bj
nj

. (3.58)

Especially note that ã1 becomes non-zero; in fact, this coeffi-
cient grows rather quickly with jmax, while the other coeffi-
cients decay.

⇤Pser(v) =
⌅↵

n=1

ãne
�v vLn(v) (3.59)deltaPser

Both expressions, ⇤Pcut(v) and ⇤Pser(v) can be obtained nu-
merically with good precision, and seem to decay rapidly at
large v.

Practical values are jmax = 15, and (3.59) can be stopped at
n = 15. With this choice, we find that all moments between
the fourth and 36th are at least given with 10�7, precision,
most even with 10�10. The first two moments have some de-
viations, which improve by taking a smaller grid-size for the
numerical integration (current ⇤v = 0.01). jmax should not

be taken too large, since otherwise this shifts too much weight
into the moment ã1. As an example, for jmax = 15, one has
ã1 = �51.97, ã2 = 0.002976, ã3 = 1.359 ⇥ 10�6, . . . ,
ã20 = 2.373⇥ 10�15.

The final result for P (v) is

P (v) = P0(v)�
⇥̃⇤⇤(0+)

2
⇤P (v) +O(⌅2) (3.60)Pv-final

= P0(v) exp

⇧
�⇥̃⇤⇤(0+)

2

⇤P (v)

P0(v)

⌃
+O(⌅2) , (3.61)Pv-resum

where we remind formula (B12) of [? ]

⇥̃⇤⇤(0+) =
⌅� ⇧

3
+O(⌅2) (3.62)

Note that the second formula (3.61), while being equivalent to
order ⌅, has the property to resum the logarithmic behavior at
small v into the correct power-law behavior. This is why we
have chosen it for the plot 3.3.

5. Discussion, asymptotic behavior

We now turn to an asymptotic analysis of ⇤Z(⌥). This knowl-
edge will allow us to calculate the exponent � of the small-
velocity behavior of P (v). From the leading term an =
�2 ln(n)/n of (3.52), we obtain

⇤Z(⌥) = � ln2(1� ⌃) +O
⇤
ln(1� ⌃)

⌅
+ . . .

= � ln2(1� ⌥) + . . . (3.63)

This yields for ⌥ ⇧ �⌃

Z(⌥) = Z0(⌥) + ⇥̃⇤⇤(0+)
1

2
ln2(1� ⌥) + . . . (3.64)b39

Suppose that P (v) = 1
v1+x e�v . Then it has Laplace transform

LTv⇥�
1

v1+x
e�v = � ln(1� ⌥)

� 1

12

�
6⇥2

E + �2 + 12⇥E ln(1� ⌥) + 6 ln2(1� ⌥)
⇥
x+ . . .

Hence

x = �⇥̃⇤⇤(0+) +O(⌅2) , (3.65)

which can be compared to z = 2� ⇥̃⇤⇤(0+) +O(⌅2).
One also expects a correction to the exponential decay, of

the form

P (v) + ⌅⇤P (v) ⇤ e�v1+�

v
(3.66)

Expanding yields ⇤P (v) ⇤ e�v ln v, equivalent to

⇤Z(⌥) ⇤ ln(1� ⌥)

1� ⌥
=
↵

n

cn⌥
n , (3.67)

and cn ⌅ lnn+const for large n. Numerically from the series
expansion (3.52), one might guess that cn = 4

3 lnn.

Velocity distribution in avalanche: tree + loops 

1 loop

1 loop

tree
tree
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There is an interesting series expansion, obtained by Taylor expanding the denominator:

⇤�xB�(1 + x, 0) =
⌅⇤

n=0

⇤n+1

n+ x+ 1
= ⇤⇥(⇤, 1, x+ 1) (9.200)b36

⇥ is the HurwitzLerchPhi function.
Pierre: one finds using that representation, including the counterterm
⌅ X

0
k2d(k2) [J (k,⇤) + Jcounter(k,⇤)] = (⇤+ 2 ln(1� ⇤)) ln(1 +X)� 2X(⇤+ ln(1� ⇤))

1 +X
(9.201)

�⇤
⌅⇤

n=0

⇤n[
2(1 + 2n)(⇤� 2 + (⇤� 1)n)

(2 + n)2
(ln(1 + n+X)� ln(1 + n)) +

n(⇤� 3 + (⇤� 1)n)2

2(3 + n)2
(ln(1 + n+ 2X)� ln(1 + n)))]

It simplifies into for X = ⇥:
⌅ ⌅

0
k2d(k2) [J (k,⇤) + Jcounter(k,⇤)] = �2(⇤+ ln(1� ⇤))� 1

2

⌅⇤

n=0

⇤1+nn(⇤� 3 + n(⇤� 1))2

(n+ 3)2
ln 2 (9.202)

+
1

2

⌅⇤

n=0

[
n(⇤� 3 + n(⇤� 1))2

(3 + n)2
+

4(1 + 2n)(⇤� 2 + n(⇤� 1))

(2 + n)2
]⇤1+n ln(1 + n)

= �2(⇤+ ln(1� ⇤))� ln 2

⇤
(⇤(6 + ⇤) + (6� 8⇤) ln(1� ⇤)� 6⇤Li2(⇤)) (9.203)

+
1

2

⌅⇤

n=0

[
n(⇤� 3 + n(⇤� 1))2

(3 + n)2
+

4(1 + 2n)(⇤� 2 + n(⇤� 1))

(2 + n)2
]⇤1+n ln(1 + n)

This is checked to be equivalent to: ***this is the only formula Kay has checked, it was slightly simplified***

�Z(⌅) :=

⌅ ⌅

0
k2d(k2) [J (k,⇤) + Jcounter(k,⇤)] = ⇤2(1� ln 4) +

⌅⇤

n=3

an⇤
n (9.204)delta-Z

an =
(n� 3)(n� 2)2 log(n� 2)

2n2
+

6 log(2)� 2n(n+ 1)(log(2)� 1)

n2(n+ 1)

� (n� 1)(n((n� 6)n+ 2) + 6) log(n� 1)

n2(n+ 1)
+

�
n2 � 8n+ 3

⇥
log(n)

2n+ 2
(9.205)

Note that limn⇥2 an = 1� 2 ln 2, i.e. the first term a2 follows the same relation, if the coefficients are properly interpreteted.
We have checked that this reproduces the explicit series expansion given in section IX B 5 up to order ⌅3. It behaves at large

n as:

an = �2
lnn

n
+ . . . (9.206)b37

Hence
⌅ ⌅

0
k2d(k2) [J (k,⇤) + Jcounter(k,⇤)] = �(ln(1� ⇤))2 + . . .

= �(ln(1 + s))2 (9.207)

It follows that

Z(s) = Z0(s)��⇤⇤(0+)
1

2
S4

⌅ ⌅

0
k2d(k2) [J (k,⇤) + Jcounter(k,⇤)]

= Z0(s)�
�̃⇤⇤(0+)

2

⌅ ⌅

0
k2d(k2) [J (k,⇤) + Jcounter(k,⇤)]

(9.208)

since Pierre:

⇥Ĩ2 = 4Ĩ3 = 4

⌅

k

1

(k2 + 1)3
= 2S4

⌅
d(k2)k2

1

(k2 + 1)3
= S4 (9.209)
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where A is dimensionless, and we will choose later A =
�md�4�⇥⇥(0). With these definitions one can write 27

G[⇧] = ⇤G�[⇧]⌅� (303)

with

G�[⇧] =

⌅
D[u̇]D[ũ]e�S�+

�
xt ⇥xt(v+u̇xt) (304)

S� = S0 � ⌃

⌅

xt
ũ2
xt(v + u̇xt)�

⌅

xt
⌅xũxt(v + u̇xt) . (305)

For each realization of ⌅x, the theory has the same features
as the mean-field theory (87) of Section III B. In particular,
the total action (including the sources) is linear in the velocity
field. Integrating over the latter, as in Section (III B) one finds

G�[⇧] = ev
�
xt ⇥xt+⇤(ũ⇥�

xt )
2+�xũ

⇥�
xt . (306)Geta

The quantity ũ⇥�
xt is now solution of the (modified) instanton

equation

(⌅⌥t +⇧2
x �m2)ũ⇥�

xt + ⌃(ũ⇥�
xt )

2 = �⇧xt � ⌅xũ
⇥�
xt , (307)

which has an additional “random-mass” term. Using this
equation, Eq. (306) can be written as

G�[⇧] = evL
dZ� [⇥] (308)

Z�[⇧] = �L�d

⌅

xt
(⌅⌥t +⇧2

x �m2)ũ⇥�
xt

= L�dm2

⌅

xt
ũ⇥�
xt . (309)

To lowest order in v we thus find

Z[⇧] = L�d⌥ve
�
xt ⇥xtu̇xt

⇤⇤⇤
v=0+

=
m2

Ld

⌅

xt
⇤ũ⇥�

xt ⌅� . (310)Zav

As we discuss later, we will need to take A < 0 at the fixed
point, hence the sign of the random term (302) is not consis-
tent with an additional real disorder. Since all we want to do
here is perturbation theory in �⇥⇥(0), more precisely in the
parameter � = 0(⇤) defined in Eq. (296), this is immaterial.
It should be considered as a trick to simplify the perturbative
calculations.

C. Perturbative solution
q1

1. General equations and formal solution for arbitrary �xt

q2
For simplicity we switch from now on to dimensionless

units, which amounts to setting ⌅ = m = ⌃ = 1. We want to
solve perturbatively in ⌅x the equation

�
⌥t +⇧2

x � 1
⇥
ũ⇥�
xt = �⇧xt � (ũ⇥�

xt )
2 � ⌅xũ

⇥�
xt . (311)q3

27 note that the noise �x is unrelated to the friction � despite the coincidence
in notations

We expand the solution in powers of ⌅x, denoting by ũn
xt the

term of order O(⌅n),

ũ⇥�
xt = ũ0

xt + ũ1
xt + ũ2

xt + ... . (312)q4

One must thus solve a hierarchy of equations,
�
⌥t +⇧2

x � 1
⇥
ũ0
xt = �⇧xt � (ũ0

xt)
2 , (313)3eq

�
⌥t +⇧2

x � 1 + 2ũ0
xt

⇥
ũ1
xt = �⌅xũ

0
xt , (314)

�
⌥t +⇧2

x � 1 + 2ũ0
xt

⇥
ũ2
xt = �(ũ1

xt)
2 � ⌅xũ

1
xt . (315)3.20

The first line, for order zero, is the usual (mean-field) instan-
ton equation (91). This perturbation problem is distinct, but
similar, to the one studied in Section III H. We introduce again
the dressed response kernel (266), now in dimensionless vari-
ables,
�
�⌥t �⇧2

x + 1� 2ũ0
xt

⇥
Rx�t�,xt = ⇥d(x� x⇥)⇥(t� t⇥) .

(316)3.21new
It has the usual causal structure of a response function, and
obeys a backward evolution equation. It allows to rewrite the
solution of the system of equations (313) to (315) as

ũ1
xt =

⌅

x�

⌅

t�>t
⌅x� ũ0

x�t�Rx�t�,xt , (317)u1

ũ2
xt =

⌅

x�

⌅

t�>t

�
(ũ1

x�t�)
2 + ⌅x� ũ1

x�t�
⇥
Rx�t�,xt . (318)u2

Consider now the average (310) over ⌅x using (302), i.e. in our
(dimensionless) units ⇤⌅x⌅y⌅� = A⇥d(x�y). Since ⇤ũ1

xt⌅� =
0, the lowest-order correction is given by the average of ũ2

xt,

Z[⇧] = Ztree[⇧] + L�d

⌅

xt
⇤ũ2

xt⌅� +O(A2) . (319)

Inserting Eq. (317) into Eq. (318), and performing the average
over ⌅, one finds

⇤ũ2
xt⌅� = A

⌅

t<t1<t2,t3

⌅

x1x�
ũ0
x�t2 ũ

0
x�t3

⇥ Rx�t2,x1t1Rx�t3,x1t1Rx1t1,xt

+A

⌅

t<t1<t2

⌅

x�
ũ0
x�,t2Rx�t2,x�t1Rx�t1,xt . (320)q6

It admits the following graphical representation

⇤ũ2
xt⌅� =

3t2

t

t1

t

+

t

1

t2

t
.

(321)q7

The symbols are as follows: (i) a wiggly line represents ũ0
xt,

the mean field-solution; (ii) a double solid line is a dressed
response function R, advancing in time following the arrow
(upwards), thus times are ordered from bottom to top. Note
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FIG. 2: The asymmetry as a function of dimension d. The solid
(red) line is the result of our �-expansion. The black dotted line is
what is the qualitative behavior suggested by evaluating the scaling
function in dimensions d = 0 and d = 2. The blue dotted line is also
consistent with the 1-loop result, and takes into account the two data
points of [8, 30], A = 0.08 in d = 1, and A = �0.065 in d = 2;
see discussion in the main text. There are currently no data for d = 3
(question mark).

law; and second, the order-� correction proportional to to the
tree-amplitude gets factorized, thus the normalized shape does
not depend on these terms, which are different for SR and LR
elasticity. We also note that the exponential factor is regular at
both x = 0 and x = 1. It is not symmetric under x ⇤ 1� x.
A good approximation for the scaling function is to write

⌃u̇(x)⌥ ⌅
⇧
Tx(1� x)

⌃��1
exp

�
A
⇤
1

2
� x

⌅⇥
(22)

We have used the value of the scaling exponent ⇥ from
Eq. (17), expected from scaling, and consistent with Eq. (21)
to order ⇤. The asymmetry close to d = 4 is given by the slope
at x = 1/2 of the exponential in Eq. (22),

A ⇥ �0.336

�
1� d

dc

⇥
. (23)

This result for SR elasticity is plotted as the solid red curve
on Fig. 2. It is difficult to make any prediction for smaller di-
mensions, and our results are a priori valid only for d close to
4. What one can try to do is to evaluate the scaling function
in lower dimensions, a calculation which for technical rea-
sons is straightforward only in dimensions d = 2, and d = 0.
What one sees is that the 1-loop correction is symmetric in
d = 2, and has the opposite sign in dimension d = 0; using
this information, the asymmetry should qualitatively behave
as the black dashed curve on Fig. 2. This suggests that there
is a critical dimension dc, at which the skewness of the shape
of the avalanche changes sign. Numerical simulations sug-
gest that in dimension d = 2 the avalanche is skewed to the
end [30], while in d = 1 it is skewed towards the beginning
[8]; this suggests a qualitative behavior as the blue dot-dashed
curve on Fig. 2. We have adjusted this line to yield the val-
ues obtained numerically [8, 30]. It would be good to test our
prediction in d = 3.
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FIG. 3: The shape of an avalanche for an interface d = 2, short-range
elasticity, � = 2. Plotted is the velocity u̇(x = t/T ) of the center-of-
mass, at time t, for an avalanche of duration T , in the limit of short
durations (black thick solid line), compared to the mean-field shape
x(1 � x) (blue, dashed, thin line) and a simple scaling-ansatz u̇ ⇥
[Tx(1 � x)]1+

�
2 (orange, dot-dashed, thick). The approximation

(22) (green dots) is almost indistinguishable from the result (21).
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3

P(S) P(S⌅) P(T ) P(u̇) P(u̇⌅)

S�⇤ S
�⇤⇥
⌅ T�� u̇�a u̇

�a⇥
⌅

short-ranged elasticity (SR) ⌅ = 2� 2
d+⇥ ⌅⌅ = 2� 2

d⇥+⇥ � = 1 + d�2+⇥
z a = 2� 2

d+⇥�z a⌅ = 2� 2
d⇥+⇥�z

long-ranged elasticity (LR) ⌅ = 2� 1
d+⇥ ⌅⌅ = 2� 1

d⇥+⇥ � = 1 + d�1+⇥
z a = 2� 1

d+⇥�z a⌅ = 2� 1
d⇥+⇥�z

TABLE I: Scaling relations

d ⇤ z ⌅ ⌅⌅ � a a⌅ ⇥

1 1.25 1.433 1.11 0.4 1.17 �0.45 12.9 1.57

SR 2 0.75 1.56 1.27 �0.67 1.48 0.32 4.47 1.76

3 0.34 1.74 1.40 �3.88 1.77 0.75 3.43 1.92

LR 1 0.39 0.74 1.28 �0.56 1.53 0.46 4.86 1.88

TABLE II: Critical exponents obtained via the scaling relations. For
the localized avalanche exponents we consider a point, d⌅ = 0.

pendent renormalizations, namely for ⇤ and z; thus such an
additional relation is suggestive. Recently, this missing re-
lation was found [29]. The key-observation is that ũxt, and
consequently Z(⌅) are not renormalized.

We now consider some cases of interest: For the static
avalanche-size distribution, ũxt is independent of time,⌥
xt ũxtm2u̇xt dimensionless, and thus ũxt ⇥ md�2+⇤ . On

the other hand,
�

dS(e⌅S � 1)P(S) = Z(⌅) ⇥ ũxt , (13)

and using that P(S) ⇥ S�⌃ , and S ⇥ m�d�⇤ implies
⌅⌃�1 ⇥ S1�⌃ ⇥ m�(d+⇤)(1�⌃). Equating both sides yields

P(S) ⇥S⇥1 S�⌃ , ⇧ = 2� 2

d+ ⇤
. (14)

This result is well known, and was first given in [12]. Con-
sider now the stationary velocity distribution. For the latter,
we have

�
du̇(e⌅u̇ � 1)P(u̇) ⇥

�

t
ũxt , (15)

with an additional time-integral over the time where the
avalanche was triggered. With the same reasoning as above,

we arrive at

P(u̇) ⇥u̇⇥1 u̇�a , a = 2� 2

d+ ⇤ � z
. (16)

Another relation is obtained from the normalization condition⌥
dS P(S) =

⌥
dT P(T ); it yields [17]

P(T ) ⇥T⇥1 T�� , � = 1 +
d� 2 + ⇤

z
. (17)

The method can easily be generalized to local avalanche ob-
servables, as S⌥ :=

⌥
Sx⌃(x), where ⌃(x) is localized on a

d⌥-dimensional subspace. This yields for the local avalanche-
size distribution

P(S⌥) ⇥S⇥⇥1 S
�⌃⇥
x , ⇧ = 2� 2

d⌥ + ⇤
. (18)

Equivalently, for the local velocity distribution we obtain

P(u̇⌥) ⇥u̇⇥⇥1 u̇
�a⇥
⌥ , a⌥ = 2� 2

d⌥ + ⇤ � z
. (19)

Since S ⇥ m�d+⇤ , and T ⇥ m�z , we further obtain

S ⇥S⇥1 T ⇥ , ⇥ =
d+ ⇤

z
. (20)

For LR-elasticity, the numerators in Eqs. (14), (16), (18) and
(19) change from 2 to 1. This is summarized on table I.

The shape function: The shape of an avalanche can also
be obtained from our field theory. The calculation is more
involved, and we only plot the necessary diagrams on figure
1. The general expressions are quite lengthy (up to a page),
and depend on its duration. Here we only give the result for
short durations:

⇧
u̇

�
x =

t

T

⇥⌃
= N

 
Tx(1�x)

⌦1+ 2�
dc

exp

�
8�

dc

⇤
Li2(1� x)� Li2

�
1� x

2

⇥
+

x log(2x)

x� 1
+

(x+ 1) log(x+ 1)

2(1� x)

⌅⇥
, (21)

with normalization NSR = 2 exp(�2 [⇥E�1�2 log2(2)� ⇧2

3 ]),
NLR = 2 exp(�[⇥E � 2 � 2 log2(2) � ⇧2

3 ]) and dc = 4 for
SR and dc = 2 for LR elasticity. *** Check the shift for

LR*** While this result is correct to first order in � = �(⌥�
⇤)/3, we have chosen to give an exponentiated form, for two
reasons: First of all, this converts ln(x[1 � x]) into a power-
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FIG. 2: The asymmetry as a function of dimension d. The solid
(red) line is the result of our �-expansion. The black dotted line is
what is the qualitative behavior suggested by evaluating the scaling
function in dimensions d = 0 and d = 2. The blue dotted line is also
consistent with the 1-loop result, and takes into account the two data
points of [8, 30], A = 0.08 in d = 1, and A = �0.065 in d = 2;
see discussion in the main text. There are currently no data for d = 3
(question mark).

law; and second, the order-� correction proportional to to the
tree-amplitude gets factorized, thus the normalized shape does
not depend on these terms, which are different for SR and LR
elasticity. We also note that the exponential factor is regular at
both x = 0 and x = 1. It is not symmetric under x ⇤ 1� x.
A good approximation for the scaling function is to write

⌃u̇(x)⌥ ⌅
⌥
Tx(1� x)

���1
exp

⇤
A
⇧
1

2
� x

⌃⌅
(22)

We have used the value of the scaling exponent ⇥ from
Eq. (17), expected from scaling, and consistent with Eq. (21)
to order ⇤. The asymmetry close to d = 4 is given by the slope
at x = 1/2 of the exponential in Eq. (22),

A ⇥ �0.336
�
1� d

dc

⇥
. (23)

This result for SR elasticity is plotted as the solid red curve
on Fig. 2. It is difficult to make any prediction for smaller di-
mensions, and our results are a priori valid only for d close to
4. What one can try to do is to evaluate the scaling function
in lower dimensions, a calculation which for technical rea-
sons is straightforward only in dimensions d = 2, and d = 0.
What one sees is that the 1-loop correction is symmetric in
d = 2, and has the opposite sign in dimension d = 0; using
this information, the asymmetry should qualitatively behave
as the black dashed curve on Fig. 2. This suggests that there
is a critical dimension dc, at which the skewness of the shape
of the avalanche changes sign. Numerical simulations sug-
gest that in dimension d = 2 the avalanche is skewed to the
end [30], while in d = 1 it is skewed towards the beginning
[8]; this suggests a qualitative behavior as the blue dot-dashed
curve on Fig. 2. We have adjusted this line to yield the val-
ues obtained numerically [8, 30]. It would be good to test our
prediction in d = 3.

� ⇧= ↵

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

u
!

FIG. 3: The shape of an avalanche for an interface d = 2, short-range
elasticity, � = 2. Plotted is the velocity u̇(x = t/T ) of the center-of-
mass, at time t, for an avalanche of duration T , in the limit of short
durations (black thick solid line), compared to the mean-field shape
x(1 � x) (blue, dashed, thin line) and a simple scaling-ansatz u̇ ⇥
[Tx(1 � x)]1+

�
2 (orange, dot-dashed, thick). The approximation

(22) (green dots) is almost indistinguishable from the result (21).
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Figure 3. The shape at fixed size, as given by Eq. (241). MF
(black solid line), and ⇥ = 1, 2, 3, 4 (red dashed, green dot-
dashed, cyan dotted, and blue dashed), moving away from
MF when increasing ⇥.
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Figure 4. The shape at fixed size, as given by Eq. (241). MF
(black solid line), and ⇥ = 1, 2, 3, 4 (red dashed, green dot-
dashed, cyan dotted, and blue dashed), moving away from
MF when increasing ⇥.
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Figure 5. The shape at fixed size, as given by Eq. (241). MF
(black solid line), and ⇥ = 1, 2, 3, 4 (red dashed, green dot-
dashed, cyan dotted, and blue dashed), moving away from
MF when increasing ⇥.
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Figure 6. The shape at fixed size, as given by Eq. (243). MF
(black solid line), and ⇥ = 1, 2, 3, 4 (red dashed, green dot-
dashed, cyan dotted, and blue dashed), moving away from
MF when increasing ⇥.
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Figure 7. The shape at fixed size, as given by Eq. (243), with
MF subtracted. ⇥ = 1, 2, 3, 4 (red dashed, green dot-dashed,
cyan dotted, and blue dashed), moving away from MF when
increasing ⇥.
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Figure 8. The shape at fixed size, as given by Eq. (241), with
�f(t) given by (220) and (228). MF (black solid line). The
remaining curves are fore ⇥ = 1, and S = 0+, 1, 10, 30 (red
dashed, green dot-dashed, cyan dotted, and blue dashed).

Why is a cusp necessary?

x =
t
T

d = 2

u̇(t,S) = S
✓

S
Sm

◆�1
⇤

f
⇣ t

⌅m

.⇣ S
Sm

⌘1
⇤
⌘

(1)
Z �

0
dt f (t) = 1 (2)

f (t) = f0(t)+
�
2

⇥ f (t) , f0(t) = 2te�t2
(3)

3

MF

Why is a cusp necessary?

x =
t
T

d = 2

u̇(t,S) = S
✓

S
Sm

◆�1
⌅

f
⇣ t

⇧m

.⇣ S
Sm

⌘1
⌅
⌘

(1)
Z �

0
dt f (t) = 1 (2)

f (t) = f0(t)+
�
2

⇥ f (t) , f0(t) = 2te�t2
(3)

⇤ = 1,2,3,4

3

MF shape is 
size independent! 

scale dependence
eliminated



Shape at fixed size: size dependence
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Figure 9. The shape at fixed size, as given by Eq. (241), with
�f(t) given by (220) and (228). MF (black solid line). The
remaining curves are fore ⇥ = 2, and S = 0+, 1, 10, 30 (red
dashed, green dot-dashed, cyan dotted, and blue dashed).

0.5 1.0 1.5 2.0 2.5
t

0.2

0.4

0.6

0.8

1.0

f !t"

Figure 10. The shape at fixed size, as given by Eq. (241), with
�f(t) given by (220) and (228). MF (black solid line). The
remaining curves are fore ⇥ = 3, and S = 0+, 1, 10, 30 (red
dashed, green dot-dashed, cyan dotted, and blue dashed).

VI. CORRELATION BETWEEN AVALANCHES
ALONG THE INTERFACE

In general the generating function reads, in a cumulant
expansion:

G = eḟx1t1<ũx1t1>�+
1
2 ḟx1t1 ḟx2t2<ũx1t1 ũx2t2>

c
�+..(244)

In the mean field theory only the first term is present,
the physical meaning being that avalanches along the
interface are independent. The correlations between
avalanches along the interface is thus given, to leading
order, by the second term.

We thus need to calculate:

< ũx1t1 ũx2t2 >c
�= �

�

x�
1t

�
1x

�
2t

�
2

Rx�
1t

�
1x1t1Rx�

2t
�
2x2t2(245)
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Figure 11. The shape at fixed size, as given by Eq. (241), with
�f(t) given by (220) and (228). MF (black solid line). The
remaining curves are fore ⇥ = 4, and S = 0+, 1, 10, 30 (red
dashed, green dot-dashed, cyan dotted, and blue dashed).
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Figure 12. The shape at fixed size, as given by Eq. (241),
with �f(t) given by (220) and (228), with the small-size shape
subtracted. The curves are fore ⇥ = 1, and S = 1, 10, 30
(green dot-dashed, cyan dotted, and blue dashed).
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Figure 13. The shape at fixed size, as given by Eq. (241),
with �f(t) given by (220) and (228), with the small-size shape
subtracted. The curves are fore ⇥ = 2, and S = 1, 10, 30
(green dot-dashed, cyan dotted, and blue dashed).
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⇥ f (t) , f0(t) = 2te�t2
(3)

⇤ = 1,2,3,4

S
Sm

= 0+,1,10,30

3
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Hence we arrive at:
A more compact representation is as a function of Y1 = y cos t and Y2 = y sin t and reads:

�1 = F1(y, t) =

�
4y2 � 7

⇥
cos(t)� 8y sin2(t) + 3 cos(3t)

16y2
(222)222

�2 = F2(y, t) =
sin(t)

�
4y cos(t) + 3 cos(2t) + 2y2 � 1

⇥

8y2
(223)223

Z = X1 =
2y cos(t) + cos(2t)� 3

4y
(224)224

X2 =
sin(t)(cos(t) + y)

2y
(225)225

J(y, t) =
4
�
y2 + 9

⇥
cos(2t) + 4y cos(t) + 12y cos(3t) + 3 cos(4t) + 4y2 � 31

64y5
(226)

Let us try �1 = 0. Then:

y =
1

2 cos t

⇤⌃
5� cos(4t) + 2

⌅
� cos(t) (227)

�2 =
sin(t)

⇤⌃
5� cos(4t) + 2

⌅

⇤
� cos(2t) +

⌃
5� cos(4t) + 1

⌅2 (228)

X1 =
cos(t)

⇤⌃
5� cos(4t)� 2

⌅

2
⇤
� cos(2t) +

⌃
5� cos(4t) + 1

⌅ (229)

Elimination of t between these equations yields X1 as a function of �2. Using series inversion it gives very easily many terms
in the series expansion:

Z̃(�2) =
�2
2

2
+

3�4
2

2
+

135�6
2

16
+

977�8
2

16
+

129963�10
2

256
+

1180377�12
2

256
+

91202891�14
2

2048
+

921684933�16
2

2048
(230)

+
308622997395�18

2

65536
+

3319859088105�20
2

65536
+

292183179645897�22
2

524288
+

3274855720092783�24
2

524288
(231)

+
596584725561431519�26

2

8388608
+

6884384627001260037�28
2

8388608
+

642973844837708624403�30
2

67108864
+O

�
�31
2

⇥
(232)

We have determined that �(t) diverges along the imaginary axis for t at t = it0 with t0 = ± 1
2 ln 3. We could in principle

choose to integrate t in the imaginary axis interval ]� it0, it0[. However then the real part of � is zero and the integral oscillates.
To get a positive real part we consider contours C where �(t) is positive for S2 > 0, and negative for S2 < 0.

P (S2) =

⇧
d�

2i⇥
X1(�)e

�S2� =

⇧

C

dt

2i⇥
J(t)e�S2�(t) (233)

J(t) =
cos4(t)

⇤⌃
5� cos(4t)� 2

⌅⇤
2 cos(2t)

⇤⌃
5� cos(4t) + 6

⌅
� cos(4t)� 7

⌅

⇤
� cos(2t) +

⌃
5� cos(4t) + 1

⌅4 ⌃
5� cos(4t)

(234)

�(t) =
sin(t)

⇤⌃
5� cos(4t) + 2

⌅

⇤
� cos(2t) +

⌃
5� cos(4t) + 1

⌅2 (235)

Hence we need a contour C going from �it0 to +it0. For the contour C Pierre chooses t = xt1 � (1 � x)it0 followed by
t = (1� x)t1 + xit0 where each time x varies from 0 to 1. Kay found the best value to be t1 = 1/2 as then the contour in the �
complex plane does not wind to much.
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FIG. 3: Two possible paths. The first one (left) starts at t = �⇥� i ln(3)2, goes straight to t = 1� ⇥ and then straight to t = �⇥+ i ln(3)2.
It makes some additional loops (some small ones close to �max are not visible on the plot). The second path starts at t = �⇥� i ln(3)2, goes
straight to t = tmax � ⇥ and then straight to t = �⇥ + i ln(3)2. �(t) has slope ⇥ at ⇤� = 0 (but is non-analytic).
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FIG. 4: S2p1(S) (red, dashed line) versus 2S2p2(S) (blue, solid line).

C. other variables

In terms of the Y variables, for �1 = 0 one can solve for Y2 and get:

�2 =
(Y1 � 2)

�
�2Y1 +

⇥
2
⇧

�Y 2
1 + Y1 + 2� 2

⇥⌃
(Y1 � 1)Y1 +

⇥
2
⇧

�Y 2
1 + Y1 + 2� 2

2Y1

�
Y1 +

⇥
2
⇧

�Y 2
1 + Y1 + 2� 2

⇥5/2
(242)

X1 = �
Y1

�⇥
2
⇧
�Y 2

1 + Y1 + 2� 2
⇥

2

⇤
Y1

�
Y1+

⇥
2
⇥

�Y 2
1 +Y1+2�2

⇥

2�Y1

⌅3/2
(243)

where Y1 is perturbatively close to 1 and I had to assume Y1 < 2.

2

It implies universal moment ratios, in particular

⇧S2
x⌃

⇧S2
⌃⌃

=
2

⇧s2⌃⌃
=

2

D � 1
. (8)

where here �S⌃ and �s⌃ denote the component of the shock
orthogonal to x. While the set of shocks along x are un-
correlated both in position and size, a property which
indeed implies (3), by contrast, longitudinal and trans-
verse components of a given shock are correlated, as from
(7) one can calculate higher moments, e.g.

4
⇧SxS2

⌃⌃⇧Sx⌃
⇧S2

x⌃2
= ⇧sxs2⌃⌃ = 4(D � 1) . (9)

We now indicate the origin of our conjecture, by recalling
the connection to disordered systems. Eq. (1) is solved
by the Cole-Hopf transformation [2] in the limit ⌅ ⇥ 0:

V̂ (�r, t) = min
⇤u

�
1

2t
(�u� �r)2 + V (�u)

⇥
, (10)

where V (�u) is the potential associated with the initial
condition, i.e. �v(�r, t = 0) = �⌥V (�r). Hence for a ran-
dom initial condition the problem is equivalent to find-
ing the minimum energy position of a particle in a ran-
dom potential, plus a harmonic well. Denoting by �u(�r)
the position of the minimum in (10), the velocity field is
�v(�r, t) = [�r��u(�r)]/t. At the shocks, the minimum jumps,
and the shock size is �S = �u(x� +0+)� �u(x� � 0+). Note
that u(�r) = �r which implies ⇧Sx⌃ = 1 as stated above.

The random potential V (�u) corresponding to the
present model (2) is a generalization of the 1D random
acceleration process [20, 21] toD dimensions. To define it
one needs a large-scale regularization; we choose periodic
boundary conditions of period L in all D directions,

V (�u) = L�D
2

⇤

⇤q ⇧=0

V⇤qe
i⇤q·⇤u, V⇤qV⇤q� =

⌃2�⇤q,�⇤q�

(q2)
D
2 +H

, (11)

where �q = 2⇥
L �n, �n ⌅ {�L/2 + 1, . . . , L/2� 1, L/2}D,

in the limit L ⇥ ⇤, and H = 3/2. In real space
this leads to a non-analytic cubic potential correlator
V (�u)V (�u⌅) = R0(�u��u⌅) with R0(�u)�R0(0) = � 1

2ALu2+
B
6 |u|

3 + O(1/L) with AL = 0.0182L⌃2 + O(L0) and
B = ⌃2/(3⇧) +O(1/L). The initial velocity correlator is
vi(�r, t = 0)vj(0, t = 0) = �⌥i⌥jR0(�r) with independent
increments distributed as in (2).

In a nutshell the basis for the conjecture is as follows.
The present model is the d = 0 limit of a model of an
elastic manifold (of internal dimension d) in a random
potential and a quadratic well of curvature 1/t. The anal-
ogous variable to �u(�r) is the center of mass of the mani-
fold, and V̂ (�r) the energy of the optimal configuration as
a function of well position. Its second cumulant defines
a renormalized potential disorder correlator R(�r) for any
d, which is shown to obey a Functional RG equation as

-30

-25

-20

-15

-10

-5

0

5

10

0 L

V
(i
,t
)

i

-10

0

10

20

30

40

50

60

70

80

0 x1 x� L

lo
c
a
ti
o
n
o
f
th
e
m
in
im
u
m

x

FIG. 1: Left. Step One: reduction to one dimension. E�ective
1-dimensional potential V(i, t) after the minimization over j,
as given in Eq.(14), at di�erent times (from top to bottom
t = 0, 2, 8). The potential becomes deeper and deeper as time
increases. Right. Step Two: location of the minimum. Solid
stair-case line is imin(x), dashed line is jmin(x) for t = 8. The
drift x is indicated. Shocks are only forward in x direction.

t is varied. This equation can be solved perturbatively
in R in a d = 4 � ⇥ expansion. It turns out that the
initial correlator R0(�r) corresponding to (2) solves the
FRG equation to all orders in ⇥, i.e. there are no loop
corrections. This implies that the correlation functions
need only be computed to tree-level, either by recursion
or from a saddle-point method, as detailed in [17]. This
leads to (3) and to Zt(⇤), which hold for any D and any
d, for this choice of initial conditions, although we need
only d = 0 (Burgers). A further result, proved to low-
est order in ⇥ = 4 � d [17] but which we expect to hold
for any d, is that (2) is an attractive fixed point of the
RG, hence for velocity correlations which di�er from (2)
only at small r, the behaviour at large t again follows
(3) [18]. Of course we cannot exclude non-perturbative
corrections, hence our prediction is, strictly, a conjecture.
In support we note that for D = 1 it has been proven in
[6]. To check it in D = 2 we now turn to numerics.

A powerful algorithm allows to solve this problem for
a slightly modified version of Eq. (10), with a discretized
variable �u = (i, j) and a continuous variable �r = x�e1

V̂ (x�e1, t) = min
1⇤i,j⇤L

�
(i� x)2

2t
+

j2

2t
+ V (i, j)

⇥
, (12)

for any x in the interval (0, L). Let us now discuss how
the algorithm finds the site �umin(x) = (imin(x), jmin(x))
which satisfies the minimization condition (12):

Step 1: Reduction to a 1-dimensional problem. For
each value of i we perform a minimization over the trans-
verse coordinate j, keeping in memory the location of the
minimum, j⇥min(i). Since this operation does not involve
x, the e�ective dimension of the problem is reduced to 1,
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FIG. 5: 2p2(s) (blue solid line) versus p1(s) (orange, dashed) in linear, log-linear and log-log scaling. The green dashed line is the asymptotics
241.

D. P (S1, S2)

We now start from Eqs. (222) to (225). We can eliminate y in favor of Z:

y =
cos(2t)� 3

4Z � 2 cos(t)
(244)

In these variables,

�1 =
Z2(3 cos(3t)� 7 cos(t))

(cos(2t)� 3)2
� Z(2 cos(2t) + cos(4t)� 7)

(cos(2t)� 3)2
� 2 sin2(t) cos3(t)

(cos(2t)� 3)2
(245)

�2 =
2Z2 sin(t)(3 cos(2t)� 1)

(cos(2t)� 3)2
� 8Z sin(t) cos3(t)

(cos(2t)� 3)2
+

sin(t)(cos(4t) + 15)

4(cos(2t)� 3)2
(246)

We have checked expanding the last equation above in a Taylor series in t, solving for t = t(�2), inserting in the first, that the
result obtained earlier for Z(�1,�2) is correctly reproduced up to order �8. The Jacobian is

det

�
⇥�1
Z

⇥�1
t

⇥�2
Z

⇥�2
t

⇥
= �cos3(t)(�32 cos(2t) + cos(4t) + 15)

(cos(2t)� 3)4
+

2Z cos2(t)(�88 cos(2t) + cos(4t) + 55)

(cos(2t)� 3)4

+
Z2(�74 cos(t) + 151 cos(3t) + 3 cos(5t))

(cos(2t)� 3)4
� 4Z3(36 cos(2t) + 3 cos(4t)� 31)

(cos(2t)� 3)4
(247)

We note that for t = 0

�1 = Z(�1, 0)� Z2(�1, 0) (248)
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We checked that if we replace in this equation recursively y by u� 2rZ �(y), then we get back (99).
In components, this reads with the definition that one first calculates ⇧iZ�(u), then put u ⇥ y, i.e. ⇧iZ�(y) := ⇧iZ�(u)|u=y:

⌃u⌃⇤ = Z�(y) +
⌥

ij

rij⇧iZ�(y)⇧jZ�(y)

rij =
1

2

⇧
uiuj

|⌃u| + �ij |⌃u|
⌃
h���(0)

m4

yi = ui � 2rij⇧jZ�(y)

(106)tree-2

Explanation: We have written Z�(y). It is indeed a function of 3 scalar arguments, ⌃⇤⌃y, ⌃⇤2, and ⌃y2. We only need the order
proportional to |u|.

Note that the first equation can also be written as

⌃u⌃⇤ = Z�(y) +
1

2

⌥

i

⇧iZ�(y) (ui � yi) (107)107

Check 1: Expanding (105) in u at N = 1 gives u⇤ = Z�u(1� 2Z�) + uZ2
�, equivalent to (101).

Check 2: Expanding the set of equations (106) in powers of ⇤ and solving for the coefficients of Z�(u), we find agreement with
eq. (102) up to order ⇤6 included, see “/Users/wiese/tex/pinning/avalanches/shocksN/math/contractions3.nb, (* solution of the
new cactus recursion relation *)”. Note that our algorithm to arrive at (102) was more efficient. This algorithm was sped up by
working on a Taylor series in ⇤ only, so that Mathematica could discard lower-order terms immediately. We give the result

Z(⌃⇤, ⌃u)

|⌃u| = ⇤1 +
1

2

�
⇤2
1 + ⌃⇤2

 
+ 2⇤1

⌃⇤2 +

⇧
3

2
(⌃⇤2)2 +

9

2
⌃⇤2⇤2

1 � ⇤4
1

⌃
+

⇧
�3

2
⇤5
1 + 3⇤3

1
⌃⇤2 +

25

2
⇤1(⌃⇤

2)2
⌃

+
3

16

�
13⇤6

1 � 93⇤4
1
⌃⇤2 + 259⇤2

1(⌃⇤
2)2 + 45(⌃⇤2)3

 
+

�
14⇤7

1 � 57⇤5
1
⌃⇤2 + 72⇤3

1(⌃⇤
2)2 + 103⇤1(⌃⇤

2)3
 

+
1

16

�
977(⌃⇤2)4 + 9017⇤2

1(⌃⇤
2)3 � 3611⇤4

1(⌃⇤
2)2 + 287⇤6

1
⌃⇤2 + 194⇤8

1

 

+
1

8

�
7741(⌃⇤2)4⇤1 + 10644(⌃⇤2)3⇤3

1 � 10842(⌃⇤2)2⇤5
1 + 4548(⌃⇤2)⇤7

1 � 651⇤9
1

 
+O(⇤9) (108)102bis

Note that both (102) and (108) reproduce the N = 1 result Z(⇤) = ⇤+ ⇤2 + 2⇤3 + 5⇤4 + 14⇤5 + 42⇤6 + 132⇤7 +O
�
⇤8

⇥
.

Note that the rij we used is the one with u not replaced by y. We tried to replace systematically u by y in R too, with absurd
results. ***RECHECK***

V. SOLUTIONS !?

We try to solve the tree equations (106) for N = 2. Define
⇤
u1

u2

⌅
= u

⇤
sin ⇥

cos ⇥

⌅
(109)

Define Z�(u, ⇥), and ⇧iZ(u, ⇥), etc. the partial derivatives w.r.t. first and second argument. (106) becomes

u (⇤1 sin ⇥ + ⇤2 cos ⇥) = Z�(y,⌅) + u [⇧1Z(y,⌅)]2

+
1

2u
[⇧2Z(y,⌅)]2 (110)

y = complicated ??? (111)
⌅ = complicated ??? (112)

Second try:

x =
u1u2

u2
, u2 = u2

1 + u2
2 (113)

(106) becomes even more complicated.

⇥ 2Ld |�⇤(0+)|
m4 |w�w⇤|

x u(x) S

Sm :=
�
S2
⇥

2⌅S⇧ =
|�⇤(0+)|

m4

3

hwhw⇥ = [uw�w] [uw⇥ �w⇥] =
�(w�w⇥)

Ldm4

2

??? WHERE ARE THE EXPERIMENTS ???


