Avalanches Kay Wiese

LPT-ENS, Paris with Pierre Le Doussal, Alberto Rosso, Alain Middleton, Sébastien Moulinet, Etienne Rolley, Alexander Dobrinevski, Andrei Fedorenko, Mathieu Delorme, Alejandro Kolton

Grenoble, June 2014

Contact line wetting

 $\wedge h$

X

- isobutanol on a randomly silanized silicon wafer
- hydrogen on disordered Cesium substrate

Functional renormalization group (FRG)

(D. Fisher 1986)

$$\frac{\mathscr{H}[u]}{T} = \frac{1}{2T} \sum_{\alpha=1}^{n} \left[\int_{k} \varepsilon_{k} |\tilde{u}_{k}^{\alpha}|^{2} + \int_{x} m^{2} (u^{\alpha}(x) - w)^{2} \right]$$
$$-\frac{1}{2T^{2}} \int_{x} \sum_{\alpha,\beta=1}^{n} R\left(u^{\alpha}(x) - u^{\beta}(x)\right)$$

Functional renormalization group equation (FRG) for the disorder correlator R(u) at 1-loop order:

$$-\frac{m\mathrm{d}}{\mathrm{d}m}R(u) = (\varepsilon - 4\zeta)R(u) + \zeta uR'(u) + \frac{1}{2}R''(u)^2 - R''(u)R''(0)$$

Solution for force-force correlator -R''(u):

FRG-calculation

calculate the generating function $Z(\lambda)$ of avalanche-sizes S:

Velocity distribution in an avalanche

classical Langevin equation

 $\eta \partial_t u(x,t) = \nabla^2 u(x,t) + m^2 \left[w - u(x,t) \right] + F(x,u(x,t))$

this is now a theory of the velocity, not of the position:

$$S = \int_{x,t} \tilde{u}(x,t) \Big[\eta \partial_t \dot{u}(x,t) - \nabla^2 \dot{u}(x,t) + m^2 \big(\dot{w} - \dot{u}(x,t) \big) \\ - \int_{x,t,t'} \tilde{u}(x,t) \tilde{u}(x,t') \partial_t \partial_{t'} \Delta \big(u(x,t) - u(x,t') \big) \Big]$$

Disorder Vertex:

$$\partial_t \partial_{t'} \Delta (v(t-t') + u_{xt} - u_{xt'})$$

= $(v + \dot{u}_{xt}) \partial_{t'} \Delta' (v(t-t') + u_{xt} - u_{xt'})$
= $(v + \dot{u}_{xt}) \Delta' (0^+) \partial_{t'} \operatorname{sgn}(t-t') + \dots$

simplifies to

$$S_{\rm dis}^{\rm tree} = \Delta'(0^+) \int_{xt} \tilde{u}_{xt} \tilde{u}_{xt} (v + \dot{u}_{xt})$$

!!! simple local cubic theory !!!

Avalanche Instanton

If $\lambda(x,t) = \lambda \delta(t)$ then the instanton equation is

$$(\partial_t - 1)\tilde{u}_t + \tilde{u}_t^2 = -\lambda\delta(t)$$

Solution

$$\begin{split} \tilde{u}_t &= \frac{\lambda}{\lambda + (1 - \lambda)e^{-t}} \theta(-t) \\ Z_{\text{tree}}(\lambda) &= \left\langle e^{\lambda \dot{u}(t)} - 1 \right\rangle \Big|_{t=0} = \int_{t<0} \tilde{u}_t = -\ln(1 - \lambda) \\ \mathscr{P}_{\text{tree}}(\dot{u}) &= \frac{e^{-\dot{u}}}{\dot{u}} & \underset{\text{for COM}}{\text{MF}} \\ \end{split}$$

Scaling laws

suppose that there is a small-*m* limit of response to kick

$$\lim_{m \to 0} \frac{\delta u(x,t)}{\delta f} = \text{finite} \iff \tilde{u}(x,t) \text{ unrenormalized}$$

This implies a plethora of scaling laws:

		$\mathscr{P}(S)$		$\mathscr{P}(S_{\phi})$		<i>p</i>)	$\mathscr{P}(T)$		$\mathscr{P}(\dot{u})$		$\mathscr{P}(\dot{u}_{\phi})$
		$S^{- au}$		$S_{\phi}^{- au_{\phi}}$			T^{-lpha}		\dot{u}^{-a}		$\dot{u}_{\phi}^{-a_{\phi}}$
SR		$\tau = 2 -$	$2 - \frac{2}{d+\zeta}$		b = 2 -	$\frac{2}{d_{\phi}+\zeta}$	$\alpha = 1 + \frac{d-2+\zeta}{z}$		$a = 2 - 10^{-10}$	$-\frac{2}{d+\zeta-z}$	$\mathbf{a}_{\phi} = 2 - \frac{2}{d_{\phi} + \zeta - z}$
LR		$\tau = 2 -$	$-\frac{1}{d+\zeta}$	$ au_{\phi} = 2 - rac{1}{d_{\phi} + \zeta}$		$\frac{1}{d_{\phi}+\zeta}$	$\alpha = 1 + \frac{d - 1 + \zeta}{z}$		$a = 2 - rac{1}{d+\zeta-z}$		$a_{\phi} = 2 - \frac{1}{d_{\phi} + \zeta - z}$
	d	ζ	z		τ	$ au_{\phi}$	α	а	a_ϕ	γ	
	1	1.25	1.43	3	1.11	0.4	1.17	-0.45	12.9	1.57	$S \sim_{S \ll 1} T^{\gamma}$
SR	2	0.75	1.56	5	1.27	-0.67	1.48	0.32	4.47	1.76	- · ·
	3	0.34	1.74	1	1.40	-3.88	1.77	0.75	3.43	1.92	$\gamma = \frac{d+\zeta}{2}$
LR	1	0.39	0.74	1	1.28	-0.56	1.53	0.46	4.86	1.88	$^{\prime}$ z

Velocity distribution in avalanche: tree + loops

2.5

