Avalanche Statistics in Disordered Visco-Elastic Interfaces

François Landes

LPTMS, Orsay

Driven Disordered Systems 2014 - 2014/06/06

June 6, 2014

In collaboration with:
E.A. Jagla (Bariloche, Argentina),
Alberto Rosso (Orsay, France).

Phys. Rev. Lett. 112, 174301
(Conventional) Depinning of an interface (1)

- Out-of-equilibrium: slow Driving \(w(t) = V_0 t \)
- Disorder: random distribution \(f_{i}^{\text{dis}}(h_i) \)
- Competition: Disorder VS Elasticity

\[
\eta \partial_t h_i = k_0 (w - h_i) + f_{i}^{\text{dis}}(h_i) + k_1 \nabla^2 h_i
\]

Two time scales, \(\eta \ll dh/V_0 \)
(Conventional) Depinning of an interface (2)

- ⇒ scale-free distribution of avalanches
 \[P(S) \sim S^{-\tau} e^{-S/S_m} \]
- ⇒ no correlations
- ⇒ Stationary stress \(\sigma \equiv k_0(w - h) \)

Works for: cracks propagation, magnetization domains, etc.
Correlations?

- compression of solids, earthquakes dynamics: correlations!

low strain rate: $\gamma = 10^{-6} \text{ s}^{-1}$

Micro-crystals compression
(S. Papanikolaou et al., Nature 490, 51721 (2012)).

- How to get correlations in Depinning Framework?
Simple Model of Viscoelastic Material

One degree of freedom h_i per site \rightarrow Two degrees of freedom h_i, ϕ_i per site

Purely elastic \rightarrow visco-elastic

$$F_{h_i \rightarrow h_{i+1}} = k(h_{i+1} - h_i) \rightarrow F_{\phi \rightarrow h} = \eta u \partial_t (h - \phi) + \text{elastic int.}$$
Visco-Elastic Depinning: Definition

\[\eta \partial_t h_i = k_0(w - h_i) + f_{i}^{\text{dis}}(h_i) + k_1 \nabla^2 h_i + k_2(\nabla^2 h_i - u_i) \]

\[\eta_u \partial_t u_i = k_2(\nabla^2 h_i - u_i), \]

with \(u_i \equiv \phi_i - h_i + h_{i-1} - \phi_{i-1} \)
Numerical Results, Two Dimensions

Visco-elastic model: Aftershocks!

Also:
Avalanche distribution: \(P(S) \sim S^{-\tau}, \tau \in [1.7, 1.8], \) realistic for Earthquakes.
Numerical Results, Mean Field

- Strong correlations appear: aftershocks, etc.
- Global avalanches, periodically.

(S. Papanikolaou et al., Nature 490, 51721 (2012)).
Approximation: Identical Wells

- White noise:

\[E_{i}^{\text{dis}} \]

\[h_{i} \]

\[\text{width} \rightarrow 0 \]

\[\mathbb{P}(z) = g(z) \]

- Simplify more: same depth for all wells, \(f_{i}^{\text{th}}(h_{i}) \equiv f^{\text{th}} \equiv \text{const.} \)

\[E_{i}^{\text{dis}} \]

\[h_{i} \]

\[\text{width} \rightarrow 0 \]

\[\mathbb{P}(z) = g(z) \]
Mean Field: conventional Depinning

\[\delta_i \equiv \text{how much force before getting out of pinning well} \]

\[\delta_i = f^{th} - k_0 (w - h_i) - k_1 (\bar{h} - h_i) \]

\[P_w(\delta) \rightarrow P_{w+dw}(\delta) = ? \]

(0) Driving: shift in \(\delta \) by \(k_0 dw \): \(P(\delta) \leftarrow P(\delta + k_0 dw) \)

(1) fraction \(P(0) k_0 dw \) of system jumps from 0 to \(\delta = z (k_0 + k_1) \):
\[P(\delta) d\delta \leftarrow P(\delta) d\delta + P(0) k_0 dw \cdot g(z) dz \]

(0) \(\oplus \) (1): \[\frac{P_{\text{step}1}(\delta) - P_w(\delta)}{k_0 dw} = \frac{\partial P_w}{\partial \delta}(\delta) + P_w(0) \frac{g \left(\frac{\delta}{k_0+k_1} \right)}{k_0+k_1} \]

(2) jumps of \(z \Rightarrow \) increase in \(\bar{h} \): shift in \(\delta \) by \(P(0) \bar{z} k_1.k_0 dw \)
\[\rightarrow \text{more steps (0), (1) } \rightarrow \text{(2): shift in } \delta \text{ by } \left(P(0) \bar{z} k_1 \right)^2.k_0 dw \]
\[\rightarrow \text{more steps (0), (1) } \rightarrow \text{(2): ...} \]
\[\ldots \text{ until shift } \approx 0. \]
Mean Field: conventional Depinning

\[\delta_i \equiv \text{how much force before getting out of pinning well} \]

\[\delta_i = f^{\text{th}} - k_0(w - h_i) - k_1(\bar{h} - h_i) \]

\[P_w(\delta) \rightarrow P_{w+dW}(\delta) = ? \]

(0) Driving: shift in \(\delta \) by \(k_0dW \): \(P(\delta) \leftarrow P(\delta + k_0dW) \)

(1) fraction \(P(0)k_0dW \) of system jumps from 0 to \(\delta = z(k_0 + k_1) \):

\[P(\delta)d\delta \leftarrow P(\delta)d\delta + P(0)k_0dW.g(z)dz \]

(0) \(\oplus \) (1):

\[\frac{P_{\text{step}1}(\delta)-P_w(\delta)}{k_0dW} = \frac{\partial P_w}{\partial \delta}(\delta) + P_w(0)g\left(\frac{\delta}{k_0+k_1}\right) \]

(2) jumps of \(z \Rightarrow \) increase in \(\bar{h} \): shift in \(\delta \) by \(P(0)\bar{z}k_1.k_0dW \)

\[\rightarrow \] more steps (0), (1) \(\rightarrow \) (2): shift in \(\delta \) by \((P(0)\bar{z}k_1)^2.k_0dW \)

\[\rightarrow \] more steps (0), (1) \(\rightarrow \) (2) : \[\ldots \]

\[\ldots \text{ until shift } \approx 0. \]
Mean Field: conventional Depinning

\(\delta_i \equiv \) how much force before getting out of pinning well

\[
\delta_i = f^{th} - k_0(w - h_i) - k_1(\bar{h} - h_i)
\]

\(P_w(\delta) \rightarrow P_{w+dw}(\delta) = ? \)

(0) Driving: shift in \(\delta \) by \(k_0dw \): \(P(\delta) \leftarrow P(\delta + k_0dw) \)

(1) fraction \(P(0)k_0dw \) of system jumps from 0 to \(\delta = z(k_0 + k_1) \):

\[
P(\delta)d\delta \leftarrow P(\delta)d\delta + P(0)k_0dw.g(z)dz
\]

(0) \(\oplus \) (1): \(\frac{P_{\text{step1}}(\delta) - P_w(\delta)}{k_0dw} = \frac{\partial P_w}{\partial \delta}(\delta) + P_w(0)\frac{g\left(\frac{\delta}{k_0+k_1}\right)}{k_0+k_1} \)

(2) jumps of \(z \Rightarrow \) increase in \(\bar{h} \): shift in \(\delta \) by \(P(0)\bar{z}k_1.k_0dw \)

\(\rightarrow \) more steps (0), (1) \(\rightarrow \) (2) : shift in \(\delta \) by \((P(0)\bar{z}k_1)^2.k_0dw \)

\(\rightarrow \) more steps (0), (1) \(\rightarrow \) (2) : \(\ldots \)

\(\ldots \) until shift \(\approx 0 \).
Mean Field: conventional Depinning

$\delta_i \equiv$ how much force before getting out of pinning well

$\delta_i = f^\text{th} - k_0(w - h_i) - k_1(\bar{h} - h_i)$

$P_w(\delta) \rightarrow P_{w+dw}(\delta) = ?$

(0) Driving: shift in δ by k_0dw: $P(\delta) \leftarrow P(\delta + k_0dw)$

(1) fraction $P(0)k_0dw$ of system jumps from 0 to $\delta = z(k_0 + k_1)$:

$P(\delta)d\delta \leftarrow P(\delta)d\delta + P(0)k_0dw.g(z)dz$

(0) \oplus (1): $\frac{P_{w+1}(\delta) - P_w(\delta)}{k_0dw} = \frac{\partial P_w}{\partial \delta}(\delta) + P_w(0)\frac{g\left(\frac{\delta}{k_0+k_1}\right)}{k_0+k_1}$

(2) jumps of $z \Rightarrow$ increase in \bar{h}: shift in δ by $P(0)\bar{z}k_1.k_0dw$

\rightarrow more steps (0), (1) \rightarrow (2) : shift in δ by $(P(0)\bar{z}k_1)^2.k_0dw$

\rightarrow more steps (0), (1) \rightarrow (2) : \ldots

\ldots until shift ≈ 0.
Mean Field: conventional Depinning

\[\delta_i \equiv \text{how much force before getting out of pinning well} \]
\[\delta_i = f^{\text{th}} - k_0(w - h_i) - k_1(\bar{h} - h_i) \]

\[P_w(\delta) \to P_{w+dw}(\delta) = ? \]

(0) Driving: shift in \(\delta \) by \(k_0dw \): \(P(\delta) \leftarrow P(\delta + k_0dw) \)

(1) fraction \(P(0)k_0dw \) of system jumps from 0 to \(\delta = z(k_0 + k_1) \):
\[P(\delta)d\delta \leftarrow P(\delta)d\delta + P(0)k_0dw.g(z)dz \]

(0) \(\oplus \) (1) : \[\frac{P_{\text{step1}}(\delta) - P_w(\delta)}{k_0dw} = \frac{\partial P_w}{\partial \delta}(\delta) + P_w(0) \frac{g\left(\frac{\delta}{k_0+k_1}\right)}{k_0+k_1} \]

(2) jumps of \(z \Rightarrow \text{increase in } \bar{h} \): shift in \(\delta \) by \(P(0)\bar{z}k_1.k_0dw \)
\to more steps (0), (1) \to (2) : shift in \(\delta \) by \((P(0)\bar{z}k_1)^2.k_0dw \)
\to more steps (0), (1) \to (2) : \ldots
\ldots \text{ until shift } \approx 0. \]
Mean Field Solution

The stationary regime (fixed point) fulfils:

\[0 = \frac{\partial P}{\partial \delta} (\delta) + P(0) \frac{g(\frac{\delta}{k_0 + k_1})}{k_0 + k_1} \]

(1)

Solution:

\[P(\delta) = \frac{1 - \int_0^{\frac{\delta}{k_0 + k_1}} g(z)dz}{\overline{z}(k_0 + k_1)} \equiv Q(\delta, k_1) \]

(2)
The stationary fixed point is given by $Q(\delta, k_1)$. The function $g(z) = e^{-z}$ is also shown in the diagram.
Mean Field Solution

From any initial state, fixed point reached in finite time.

If \(P(0) < \bar{z}k_1 \): finite avalanches with cutoff
\[
S_m = (1 - P(0)\bar{z}k_1)^{-2} = \left(\frac{k_0+k_1}{k_0} \right)^2
\]

If \(P(0) \geq \bar{z}k_1 \): divergent avalanches, more analysis needed.
Exact results: Mean Field (1)

Two limiting regimes compete ⇒ cycle emerges

\[\delta_i = f^{th} - k_0(w - h_i) - k_1(h - h_i) - k_2(h - h_i - u_i) \] (3)
\[\eta_u \partial_t u_i = k_2(h - h_i - u_i) \] (4)

\[k_0 = 0.001, \quad k_1 = 0.1, \quad k_2 = 0.3 \]
Exact results: Mean Field (2)

Stress oscillates periodically:

\[\sigma \text{ of } Q(k_1) \]

\[\sigma \text{ of } Q(k_1 + k_2) \]
Conclusions

- understand aftershocks or avalanches’ correlations:
 visco-elasticity is a good candidate

- **microscopic** time $\eta_u \Rightarrow$ **emerging time scale** (periodicity)
 (Non-Equilibrium Non-Stationary State)

- **Fokker-Planck** analysis allows to understand the
 time-dependent evolution of the system state.

- periodic behaviour explained as a competition between
 (fast-dynamics) **stable** depinning critical point $Q(\delta, k_1 + k_2)$
 VS **unstable** one (but attractive for the slow dynamics)
 $Q(\delta, k_1)$
Thank You!
Three characteristic times

Three time scales: internal avalanche time, inter-aftershock time, driving

\[\eta \ll \eta_u \ll \frac{dh}{V_0} \]

\[\eta \partial_t h_i = k_0(w - h_i) + f_i^{\text{dis}}(h_i) + k_1 \nabla^2 h_i + k_2(\nabla^2 h_i - u_i) \]
\[\eta_u \partial_t u_i = k_2(\nabla^2 h_i - u_i), \]

- (i) During avalanches (time \(\sim \eta \))
 \(\Rightarrow \) dashpots are blocked, \(u_i \approx \text{const.} \) interface \(h \) jumps
 \(\rightarrow \) classical depinning evolution, with \(k_1^{\text{eff}} = k_1 + k_2 \)

- (ii) Between avalanches (time \(\sim \eta_u \))
 When \(h_i \) are pinned: relaxation of \(u_i \): \(u_i \rightarrow \nabla^2 h_i \).
 \(\Rightarrow \) triggers new avalanches (\(\sim \) aftershocks)
 \(\rightarrow \) drive towards classical depinning state, \(k_1^{\text{eff}} = k_1 \)

- (iii) When all \(h_i \) pinned and all \(u_i \) relaxed (time \(\sim \frac{dh}{V_0} \)):
 \(\Rightarrow \) drive, \(w \rightarrow w + dw \)
Mean Field: conventional Depinning (1) : Summary

- Fully-connected model: $(\nabla^2 h)_i \rightarrow \bar{h} - h_i$
- Equal pinning wells: $f_i^{\text{dis}}(h_i) \rightarrow f^{\text{th}}, P(z) = g(z)$
- Interface continuous motion discretized:
 \[
 \{ \partial_t h > 0 \Rightarrow \text{jump} \} \rightarrow \{ \delta_i < 0 \Rightarrow \text{jump} \}
 \]
 with \(\delta_i \equiv f^{\text{th}} - k_0(w - h_i) - k_1(\bar{h} - h_i) \)
- All sites equivalent: Fokker-Planck analysis
 \[
 \{ h_i, \forall i \} \rightarrow \{ \delta_i, \forall i \} \rightarrow P(\delta) \text{ describes whole system}
 \]
 \(N \) blocks \(\rightarrow \) \(N \) blocks \(\rightarrow \) \(\infty \) blocks
- \(\partial_t h = \cdots \rightarrow \partial_t P(\delta) = ?? \)
Numerical Results: 2D

- locally pseudo periodic
- local stress: oscillations between two values

Graph showing stress variation with w for patches A and B.