

Laboratoire de Physique des Solides (Université Paris-Sud, Orsay)

<u>V. Jeudy</u>, J. Ferré, J. Gorchon, A. Mougin, J.-P. Jamet, P. Metaxas, V. Repain, M. Bauer, S. Lemerle,

Collaborations: V. Baltz, B. Rodmacq (Inst. L. Néel, Grenoble)

S. Bustingorry, A. Kolton (C.A. Bariloche)

T. Giamarchi (Univ. Geneva)

FIELD-DRIVEN T. Giamarch DOMAIN WALL MOTION

IN FERROMAGNETIC FILMS WITH WEAK DISORDER

MOTION OF AN ELASTIC INTERFACE IN A WEAKLY DISORDERED SYSTEMS

Domain walls in ferroelectric films

Domain walls in ferromagnetic films

Fluid impregnation

Universal behavior: different physics at the microscopical scale,

suspension same description at the macroscopical level?

To what extends interface motion can be used to address some general problems in statistical physics ?

Bacteria colonies Fluid wetting 1D interface, 2D medium; similar

FORCE DRIVEN MOTION OF AN INTERFACE: BASIC IDEAS

Magnetization reversal, depinning, current

P. Chauve et al., PRB (2000), T. Giamarchi et al., Lect. Notes Phys. (2006), E. Agoristsas et al. Physica B (2012)

OUTLINE

- **1- MAGNETIZATION REVERSAL IN FERROMAGNETIC THIN FILMS**
- **2- THE CREEP REGIME AT CONSTANT TEMPERATURE**
- **3- THERMAL STUDY OF PINNING DEPENDENT REGIMES**
- **4- DOMAIN WALL MOTION DRIVEN BY AN ELECTRIC CURRENT**

1- MAGNETIZATION REVERSAL IN FERROMAGNETIC THIN FILMS

- Pinning strength
- Magnitude of the driving force
- Method for DW velocity measurement
- DW dynamical regimes

STRONG PINNING DISORDER: NUCLEATION

J.P. Attané et al., PRB (2010)

WEAK PINNING DISORDER: INTERFACES PROPAGATION

M. Bauer et al., Phys. Rev. Lett. (2005)

MEASUREMENT OF DW VELOCITY

Magneto-optical Kerr microscopy and magnetic field pulses

After

Displacement

Average velocity= DW displacement/pulse duration

Limits :

- multiple nucleation at high field
- Strong and extended pinning defects

GaMnAs T=40 K

VERY WEAK PINNING DISORDER : FLOW REGIMES

(Ga,Mn)As 50nm thick film with PMA

Dynamics

- Controlled by dissipation
- Depends on the magnetic structure of the domain wall

Different regimes

- Steady : fixed direction of magnetization \vec{M}
- Precessionnal : rotation of \vec{M}

WEAK PINNING DISORDER : HIGH FIELD FLOW REGIME

Larger pinning strength \Rightarrow The steady flow regime is hidden by pinning depend motion.

ROUGHTNESS AND VELOCITY

Creep: rough domain walls Flow: smooth domain walls

P. Metaxas et al., Phys. Rev. Lett. (2007)

2- THE CREEP REGIME AT CONSTANT TEMPERATURE

- Theoretical predictions and experimental results
- Controlling domain wall creep

CREEP REGIME: BASIC MODEL AND PREDICTIONS

Free energy of a DW segment of size *L* $F(L, u) = \epsilon_{el} \frac{u^2}{L} - \epsilon_{pin} u \sqrt{n_i \xi L} - M_s HtLu$ elastic pinning Zeeman

$$\begin{split} \xi : & \text{correlation length of the disorder} \\ n_i : & \text{density of pinning centers} \\ \mathbf{\epsilon_{el}} &\approx 4\sqrt{AKt} : & \text{elastic energy} \\ \Delta &= \sqrt{A/K} : & \text{domain wall thickness} \end{split}$$

Pinning control parameters Larkin length $\mathbf{L}_{\mathbf{c}} \leftarrow F_{elastic} (L_c, \xi) = F_{pinning}(L_c, \xi)$ Depinning field $\mathbf{H}_{dep} \leftarrow F_{pinning}(L_c, \xi) = F_{Zeeman}(L_c, \xi)$ Depinning temperature $\mathbf{k}_{\mathbf{B}}\mathbf{T}_{dep} \approx F_{pinning}(L_c, \xi)$

Predictions Velocity: $v_{creep} = v_{creep}^{0} e^{-\frac{T_{dep}}{T} \left(\frac{H_{dep}}{H}\right)^{\mu}}$ Roughness: $w(L) = \langle \langle (u(x+L) - u(x))^{2} \rangle \rangle \alpha \left(\frac{L}{L_{c}}\right)^{2\zeta}$ with $\mu = 1/4$ and $\zeta = 2/3$

S. Lemerle et al., Phys. Rev. Lett. (1998)

GDR Phenix 2014 13

CREEP REGIME : DW MOTION IN Pt/Co/Pt ULTRATHIN FILMS

Both scaling laws are compatible with theoretical predictions

Roughness exponent

Ultrathin Pt/Co/Pt films:

experimental model system to investigate the elastic interface motion in a weakly disordered systems

S. Lemerle et al., Phys. Rev. Lett. (1998), P. Metaxas et al., Phys. Rev. Lett. (2007)

CONTROLLING DOMAIN WALL CREEP

Irradiations by ion beam

Low dose He⁺ irradiation

⇒ Co and Pt intermixing at the interface: alloying of the Co and smoothing of the nano-irregularities
⇒ reduction of the pinning strength

J. Ferré et al., phys. stat. sol. (a) (2004), J. Ferré et al. J. Phys. D (2003)

CONTROLLING DOMAIN WALL CREEP

Creep in presence of an interlayer coupling

Other studies at the LPS:

- Periodic pinning potential
- DW deroughening due to dipolar interactions

- Coupling between the two Co layers (RKKY, dipolar interaction)

- Effective coupling field:
$$H_J = \frac{J}{M_s t}$$

P. Metaxas et al. J. Mag. Mag. Mat. (2008),

3- THERMAL STUDY OF PINNING DEPENDENT REGIMES

COULD WE BRIDGE THE GAP BETWEEN THE CREEP AND THE FLOW REGIME ?

FIELD DRIVEN DOMAIN WALL DYNAMICS FOR DIFFERENT TEMPERATURES

- $T \searrow \Rightarrow$ shifts of the curves towards the high field region.

- Nature of the dynamical regimes ?

J. Gorchon et al., submitted to Phys. Rev. Lett.

IDENTIFICATION OF PINNING DEPENDENT REGIMES

Cross over fields: $H_{C-T}(T)$ and $H_{dep}(T)$ Fit of the creep law $\Rightarrow T_{dep}(T)$ and $v_{creep}^{0}(T)$

- **Creep :** $H < H_{C-T}$ $v_{creep}(H,T) = v_{creep}^{0}(T) e^{-\frac{T_{dep}}{T} \left(\frac{H_{dep}}{H}\right)^{1/4}}$
- TAFF: $H_{C-T} < H < H_{dep}$ Thermally Activated Flux Flow $v_{TAFF}(H,T) = v_{TAFF}{}^0(T) e^{-\frac{T_{dep}}{T} \left(1 - \frac{H}{H_{dep}}\right)}$
- Depinning : $\mathbf{H} \ge H_{dep}$
- Flow: $\mathbf{H} \gg H_{dep}$ $m = \frac{v}{H} - DH^{-4}$ L.W. Chen et al. PRB 51 (1995)

J. Gorchon et al., submitted to Phys. Rev. Lett. P.W. Anderson and Y.B. Kim, Rev. Mod. Phys. (1964) GDR Phenix 2014 20

IDENTIFICATION OF PINNING DEPENDENT REGIMES

 \Rightarrow 3 pinning dependent dynamical regimes

Parameters controlling DW dynamics - $H_{dep}(T), T_{dep}(T)$

Velocities

- Mobility in the flow regime: *m*
- Creep prefactor : $v_{creep}^{0}(T)$
- Velocity at the depinning transition: $v(H_{dep}(T))$

DEPINNING TRANSITION

 \Rightarrow Universality of the depinning transition

CREEP PREFACTOR

Creep law

$$v_{creep}(H,T) = \boldsymbol{v_{creep}}^{\mathbf{0}}(T) e^{-\frac{T_{dep}}{T} \left(\frac{H_{dep}}{H}\right)^{1/2}}$$

The creep pre-factor is temperature dependent.

$$\Rightarrow v_{creep}^{0}(T) = \frac{\xi}{\tau} e^{C\frac{T_{dep}}{T}} \text{ with } C \approx 1.04 \pm 0.02$$

for $\xi = 19nm, \tau = 1ns$ close to typical relaxation time.
$$\Rightarrow \text{ Effective attempt frequency } :\frac{1}{\tau_{eff}} = \frac{1}{\tau} e^{C\frac{T_{dep}}{T}}$$

 $T_{dep} \searrow \Rightarrow \text{ more time is spent for the exploration of surrounding}$

MICROSCOPIC PARAMETERS CONTROLING DW PINNING

• Sample characterization \Rightarrow elastic energy ϵ_{el} and magnetization at saturation M_S

- Eq. 1 \Rightarrow corelation length of the disorder $\xi(300 \text{ K}) = 19 \text{ nm}$
 - ≈ lateral size of Pt crystallites determined by AFM $\Rightarrow \xi$ is T-independent.

THERMAL SCALING OF THE LARKIN LENGTH

Predictions :

good agreement \Rightarrow universal thermal dependence of the Larkin length

CONCLUSION ON THERMAL STUDIES AND OPEN QUESTIONS

• 3 pinning dependent regimes : creep, <u>TAFF</u> and depinning

- The creep pre-factor is temperature dependent. Origin ?
- Depinning transition: universal thermal scaling exponent $\psi = 0.15$
- Larkin length: universal thermal exponent $\varphi = 0.24$
- TAFF regime : universal? Origin ?
- and...

4- DOMAIN WALL MOTION DRIVEN BY AN ELECTRIC CURRENT

CURRENT DRIVEN DW MOTION IN A TRACK

DW motion due to a spin transfer torque between the spin of the carriers and the local magnetization.

$$v = v_0 e^{-\left[\frac{T_{dep}}{T+aJ^2}\left(\frac{H_{dep}}{H}+bJ\right)^{\mu}\right]}$$
 with $\mu \approx \frac{1}{4}$

Same creep exponent as for field-driven DW motion

K.-J. Kim et al., Current Appl. Phys. 13, 228 (2013)

CURRENT DRIVEN DW MOTION IN EXTENDED GEOMETRY

- Correlation between the DW velocity and its shape
- Different roughness exponent: $\zeta_H = 0.68 \pm 0.04$ $\zeta_J = 0.99 \pm 0.01$
- Physics of the formation of the montains ?

K.-W. Moon et al., Phys. Rev. Lett. 110, 107203(2013)

CONCLUSION

 Ultrathin Pt/Co/Pt films: Model system to investigate the elastic interface motion in a weakly disordered systems

- Thermal study:

- Evidence of 3 distinct pinning dependent regimes : creep, TAFF, and depinning
- Determination of the universal scaling laws for the depinning transition
- Extraction of (non-universal) microscopic length and energy scales

PERSPECTIVES

- Transient creep regime
- Current induced DW motion