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Shear-banding in complex fluidsShear-banding in complex fluids

Are the mechanisms underplay behind the “shear-banding instability” the same in 
complex fluids with or without yield stress? 
Can similar theoretical and numerical approaches be used to rationalize it?
Or are there important differences?
What do recent experiments tell us about this problem?
 

e.g. wormlike micelles e.g. “thixotropic” yield   
         stress fluids

e.g. “simple” yield 
         stress fluids
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Shear-banding and yielding in fluids?Shear-banding and yielding in fluids?

σ

t or γ1 2 3

R.L. Moorcroft and S.M. Fielding, PRL (2013) and following papers. 

Like idealized solids

Like idealized fluids

Unlike anything we like
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Shear band, shear-band, shear 
banding, shear-banding, etc...

Shear band

A shear band (or, more generally, a 'strain localization') is a 
narrow zone of intense shearing strain, usually of plastic 
nature, developing during severe deformation of ductile 
materials. As an example, a soil (overconsolidated silty-clay) 
specimen is shown in Fig. 1, after an axialsymmetric 
compression test. Initially the sample was cylindrical in shape 
and, since symmetry was tried to be preserved during the test, 
the cylindrical shape was maintained for a while during the 
test and the deformation was homogeneous, but at extreme 
loading two X-shaped shear bands had formed and the 
subsequent deformation was strongly localized (see also the 
sketch on the right of Fig. 1).

Other disconnected page: “Adiabatic shear band”
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Shear-banding

using Google Scholar

12000 papers

Shear-banding + solid = 8500 

Shear-banding + fluid = 6000 

Consistency and completeness...

# of papers

SB+ solid + fluid = 4000
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Solid mechanics

Fluid mechanics

Continuum 
mechanics

H solids

⌐N fluids

N fluids

Rheology

R. ⊂ C. Mech.

?
⌐H solids

Rheology

?

R. ⊃ C. Mech. Colloidal  
chemistry +

Statistical 
physics + Etc.

“rheology is the study of deformations and �ows of matter.” 

Reiner, M. (1964), Physics Today 17, 62. 

Bingham: “Were you, a civil engineer, and I, a chemist, are working together at joint problems. With the 
development of colloid chemistry, such a situation will be more and more common. We therefore must 
establish a branch of physics where such problems will be dealt with.”

Reiner: “This branch of physics already exists; it is called mechanics of continuous media, or mechanics of 
continua.”
Bingham: “No, this will not do, such a designation will frighten away the chemists.”
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Reiner, M. (1964), Physics Today 17, 62. 

The Deborah number De =  time of relaxation / time of observation

De = τ/t

“Solid is the state in which matter maintains a !xed volume and shape; 
liquid is the state in which matter maintains a !xed volume but adapts to the shape of its container; 
and gas is the state in which matter expands to occupy whatever volume is available” 

παντα ρει! 
Everything flows! 

�uid

gas

liquid

solid

plasma

glass

[From wikipedia: “state of matter”]

Etc.

De = τ/t → 0,  more fluid 
 De = τ/t → ∞, more solid 
 “Everything flows and nothing abides; 
everything gives way and nothing stays fixed.”
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The Deborah number De =  time of relaxation / time of observation

De = τ/t

M.A. Fardin, On the Rheology of Cats (2014?)
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M.A.. Fardin and S. Lerouge, Highlight for Soft Matter (to be published – 2014)
M.A. Fardin and S. Lerouge, EPJE 2012
S. Lerouge and J.F. Berret, Adv. Polym. Sci. 230, 1 (2010)
J. T. Padding et al., Soft Matter 5, 4367–4375 (2009)

macro

micro
Fluid structure
Kinetics

Kinematics
Flow structure

Shear-bandingShear-banding  in in complex fluidscomplex fluids
e.g. wormlike micelles
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What it is not (?) : shear start-up in liquid water [                     ]

d

T. Gallot et al.,  Rev. Sci. Instrum. 84, 045107 (2013)

Transient gradient 

banding?

τ = d2/ν = ρd2/η

τ ≈ 1 s

De ≤ 1 : unsteady
De ≥ 1 : steady

Moorcroft & Fielding, PRL (2013) 
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Shear-bandingShear-banding  in in complex fluidscomplex fluids
What it is not (?) : shear start-up in liquid water [                     ]

τ = d2/ν = ρd2/η

τ ≈ 1 s ?

Steady vorticity banding??

De does not tell 
us anything 
about stability!

T. Gallot et al.,  Rev. Sci. Instrum.  (2013)

d
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“inertial nonlinearity”

Re ≡ τ
i
 γ

Reynolds number
.

De
i
 ≡ τ

i
/T

Deborah number

For a simple incompressible fluid, 

We assume that the stress is proportional to the shear-rate. 
Shear-thickening is only apparent and is due to flow instabilities.
De

i 
gives us information about the unsteady/steady nature of the flow. 

Re gives us information about the stable/unstable nature of the flow. 
We do not speak of shear-banding but of boundary layer dynamics etc. 
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Simple fluids Soft matter

Shear localization “due to” 
- Boundary layers dynamics
- Hydrodynamic instabilities
- No mesoscopic picture

Shear localization “due to”
- Shear-banding “instability”
- No flow instabilities because Re ~ 0...
- Some mesoscopic pictures

t

τ 1/γ
.

“�uid”

“container”

“�ow”
S

2
 ≡ τ γ

Stability number
.

S
1
 ≡ τ/t

Steadiness number

If no yield stress If yield stress

S
2
/S

1
 ≡ γ

Deformation

Rather use:

+  S
1
 � S

2
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“inertial nonlinearity”

S
2
=f(Re,Wi)

Re ≡ τ
i
 γ

Reynolds number
.

For a review see A.N. Morozov and W.van Saarloos, Physics Reports (2007)

non-trivial 
coherent flow 

laminar
flow

turbulent
flow

~1-10

“viscoelastic nonlinearities”

Wi ≡ τ
e
 

Weissenberg number 

γ
.

Purely inertial limit: Wi = 0, so S
2
 = Re 

Purely elastic limit: Re = 0, so S
2
 = Wi

Flow-induced structures vs �ow instabilities

If no yield stress

S
1 
→

 
0

with
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Shear-localization and flow instabilities Shear-localization and flow instabilities 
Polymers and living polymers; e.g. entangled micelles. 

S
2
 = Wi  (if Re → 0)

S
1
 → 0

Now well understood if:

Perspectives...

Search papers by M.A. Fardin et al....
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Search papers by T. Divoux et al....

Transient shear-localization and yieldingTransient shear-localization and yielding

S
2
/S

1
 = γ

S
1
 = f(σ,γ)

Perspectives...

.d
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For an introduction see A. Jaishankar, Fractional Constitutive Equations and the Rheology of Multiscale Materials (2014)
And McKinley Group webpage: summer readings 2010.

Flow-induced structures vs �ow instabilities

If yield stress

t

τ 1/γ
.

“�uid”

“container”

τ = f(  )γ
.

“�ow”

Or non-Newtonian t measure ? 

Fractional Calculus

- Anomalous diffusion
- Stretched exponential relaxation
- Power law modulus
- Spectrum of relaxation times
- Yielding? (ongoing)
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S. Lerouge and J.F. Berret, Adv. Polym. Sci. 230, 1 (2010)

ReviewsReviews

How the discovery of flow instabilities in micelles rationalized “rheochaos”:

M.A. Fardin and S. Lerouge, EPJE 35, 91 (2012)

How to adapt the phenomenology of viscoelastic instability to shear-banded flows of micelles:

C. Perge, M.A. Fardin and S. Manneville, EPJE 37, 23 (2014)

Flow instabilities and shear-localization in dilute, entangled and maybe ordered micelles: 

M.A. Fardin and S. Lerouge, Soft Matter – under review (2014)

The hydrodynamic vs structural perspectives on micellar flows:

M.A. Fardin et al., Soft Matter 8, 910 (2012)

Why the “purely mechanical” vs “thermodynamical” debate on shear-banding is outdated:

M.A. Fardin, C. Perge and N. Taberlet, Soft Matter 10, 3523 (2014)

How results in Taylor-Couette flow tell us about many other types of flows:

In 2015 → 2x Rev. Mod. Phys. 
- One on flow instabilities in complex fluids (Fardin, McKinley, Lerouge)
- One on yield stress fluids (Divoux, Manneville, Berthier, Bonn, Denn) 


