

Grenoble 05/06/2014

Jamming at finite T, a granular media experiment

Olivier Dauchot, Corentin Coulais, Antoine Seguin, Frédéric Léchenault, Raphael Candelier

<u>Coll.:</u> Giulio Biroli, Jean-Philippe Bouchaud Ludovic Berthier

Overview

Introduction

Why studying Jamming in vibrated grains ?

Dynamical signature of jamming in a system of brass, (hard) discs

Dynamical heterogeneities at minute scales

Open Issues

Jamming in a system of photo-elastic (soft) discs

Role of the dynamics at the contact

Exploring the vicinity of point J

Mechanical response to a point like disturbances

Journey of an intruder

Around an inflater

Jamming in a very loose sense

A paradigm: Jamming of soft spheres at T=0

Experimental realizations

Grains, Behringer

Foam, Katgert et van Hecke, 2010

What about these situations?

Colloidal suspensions => thermal agitation

Dense granular flows => mechanical excitation

Control of Dynamics by Jamming scalings?

Effect of Dynamics on jammed systems?

Jamming in a system of vibrated brass discs

- Horizontal vibration (ω=10 Hz, a=1cm)
 Bi-disperse : d_s = 4mm d₁ = 5mm
- 8000 brass discs in the system (1500 tracked)
- Vibration-trigged camera
- Tunable volume
- Pressure measured on the side

Experimental protocol

ParisTech

- Increase packing fraction stepwise:
 - Allow for the slow relaxation of pressure
- Then decrease packing fraction and record dynamics

Experimental protocol

- Increase packing fraction stepwise:
 - Allow for the slow relaxation of pressure
- Then decrease packing fraction and record dynamics

Dynamics: Heterogeneous tiny displacements

Altogether...

- What is the mechanism responsible for such heterogeneities?
- Why is there a maximum and not just a divergence?

Redo the experiment with soft photoelastic

discs => access to contacts

Same protocole: again a granular glass

But this time a glass of soft discs

Signature of jamming within contacts

EC2M Effets Collectifs & Matière Molle

Dynamics of the contact network...

$$egin{aligned} Q^{z}(t, au) &= rac{1}{N}\sum_{i}Q^{z}_{i}(t, au) & ext{where } Q^{z}_{i}(t, au) &= iggl\{ egin{aligned} 1 & ext{if } |z_{i}(t+ au) - z_{i}(t)| \leq 1 \ 0 & ext{if } |z_{i}(t+ au) - z_{i}(t)| > 1 \ Q_{z}(au) &= \langle Q^{z}(t, au)
angle_{t} \end{aligned}$$

... is heterogeneous and governs the grains motion

Summary: two distinct signatures

Reducing the vibration

Three sets of experiments

f = 6.25, 7.50, 10.00 HzIf $f < f_0 = 4.17$ Hz, no motion.

$$\gamma = \frac{f - f_0}{f_0}$$

Decreasing the vibration

ParisTech

Hence two crossover lines : Widom lines

How far from the critical point?

Comparison with thermal soft spheres...

Discussion: in the light of the street-lamp

Conclusion of the first part

- They can constrain existing theories
- Theories have something to say about the real world...
- One cannot exclude effects of friction at the quantitative level

- => One step further (in the dark...)
 - Yielding close to jamming
 - A first attempt to probe elasticity close to jamming

Yielding close to jamming ...

Yielding close to jamming : the motion of an intruder ...

Evidence of a fluidization transition

26

Indeed two very different rheological behaviors

• Intermittent regime : $F \propto \ln \langle V \rangle$

EC2M Effets Collectifs & Matière Molle

In the intermittent regime : signature of Jamming

ParisTech

Pinning-depinning like dynamics => Crackling noise signals

Instantaneous field around the intruder

Typical contours of clusters of the 15% fastest particles

- A very heterogeneous and intermittent field
- More and more chained-like clusters
 - $< n_{neigh} >$ goes from 4 to 5.5
 - fractal dim. of the contour goes from 1.3 to 1.5

Averaged displacement field around the intruder

Two symmetric vortices on both side of the intruder

No sharp evidence of the transition in the averaged field

 \bullet Exponential decrease of $\langle v_x \rangle$ with distance from the intruder :

the associated length scale does not depend on Φ .

Probing elasticity : set up

- Prepare the system at large packing fraction under vibration
- Inflate an intruder in the center (the vibration is stopped)
- Decrease the packing fraction while vibrating

iterate

Probing elasticity : the linear elastic framework

$$A = \frac{R_0^2}{\left(R_1^2 - R_0^2\right)}; B = \frac{R_1^2}{\left(R_1^2 - R_0^2\right)}$$

Nota Bene

In the limit of large R₁, A->0, B->1 : this is a shear test!

G and K are simply obtained by the ratio of the stress and strain tensor invariants

For each packing fraction and each a/R₀

Parametric plot of stress vs strain

Gulliver

EC2M Effets Collectifs & Matière Molle

Conclusion

- Vibrated granular media are suitable tools for probing the vicinity of jamming, (in particular low enough T_eff)
- Two distinct crossovers (one dynamical, one structural) converge toward J-point in the limit of low vibration
- Pulling an intruder in vibrated hard discs has allowed us to probe the yield stress of "thermal origin" and reveals complex pinning – depinning like dynamics
- Inflating an intruder in soft photo-elastic discs => Non linear rheology

Thank you!

Further readings : • Europhysics Letters, 83, 46003, (2008).

- Soft Matter, 6 (13), 3059–3064, (2010).
- Phys Rev Lett 103 12800 (2009).
- Europhysics Letters, 100, 44005 (2012).
- Soft Matter (2013) to appear.

