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Overview 
! Introduction 

 Why studying Jamming in vibrated grains ? 

! Dynamical signature of jamming in a system of brass, (hard) discs 

 Dynamical heterogeneities at minute scales 

 Open Issues  

! Jamming in a system of photo-elastic (soft) discs 

 Role of the dynamics at the contact 

 Exploring the vicinity of point J    

! Mechanical response to a point like disturbances 

 Journey of an intruder 

 Around an inflater     
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Jamming in a very loose sense 
! Slow, crowdy, stuck, rigid … 
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A paradigm: Jamming of soft spheres at T=0 

! A well defined concept,   
(O’Hern et al. (2002) ) 

 

 

ΦJ 

P 

Φ	



Hard Soft 

A geometrical transition 
# of contacts jumps to zJ = ziso  
δz= z-zJ ~ (Φ-ΦJ)1/2 

g(r=d) = delta function 

A mechanical transition 
Pressure scales as prescribed by elasticity 
Elastic moduli scaling K/k ~ δz0; G/k ~ δz 
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Experimental realizations 

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

Back to real world, but simplified

Experimental model systems

To what extent athermal soft spheres describe such systems ?

Green peas, Hales, 1727 Emulsion, Jorjadze et al., 2011

Colloids, Liu et al., 2010

Grains, Behringer Foam, Katgert et van Hecke, 2010

Grains, Pouliquen
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What about these situations? 

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

Back to real world, but simplified

Experimental model systems

To what extent athermal soft spheres describe such systems ?

Green peas, Hales, 1727 Emulsion, Jorjadze et al., 2011 Colloids, Liu et al., 2010

Grains, Behringer Foam, Katgert et van Hecke, 2010 Grains, Pouliquen
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Colloidal suspensions 
=> thermal agitation 

Dense granular flows 
=> mechanical excitation 

Control of Dynamics by Jamming scalings? 
 

Effect of Dynamics on jammed systems? 
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Jamming in a system of vibrated brass discs 

µ 

trigger 

Camera 

P

µ 
ω, A  

. 

. 

!  Vibration-trigged camera 
!  Tunable volume 
!  Pressure measured on the side 

!  Horizontal vibration (ω=10 Hz, a=1cm) 
!  Bi-disperse : ds = 4mm  dl = 5mm 
!  8000 brass discs in the system (1500 tracked) 
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Experimental protocol 
! Increase packing fraction stepwise: 

!   Allow for the slow relaxation of pressure 

!  Then decrease packing fraction and record dynamics 

 Φ

Etc.
ΦRLP

Φ

Etc.
ΦRLP



9 
Gulliver 

EC2M Effets Collectifs & Matière Molle    

Experimental protocol 
! Increase packing fraction stepwise: 

!   Allow for the slow relaxation of pressure 

!  Then decrease packing fraction and record dynamics 

 Φ

Etc.
ΦRLP

Φ

Etc.
ΦRLP

A completely frozen structure 
=> A granular glass 
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Dynamics: Heterogeneous tiny displacements 

! Particles trajectories :  
!  Displacement : 
 

( ) ( )trtrtr iii
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−+≡Δ ττ ),(
( )tri
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The thermal vestiges in Dynamics ?

Dynamical Signature in brass grains Lechenault et al EPL 2008

Maximum dynamic heterogeneities
on tiny scales
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1 What mechanisms do cause such an heterogeneity ?
2 Crossing the jamming transition in hard grains ?

C. Coulais Contacts Dynamics

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

Back in 2009

Maximum dynamic heterogeneities on tiny scales close to Jamming

In brass grains 5mm particles

Lechenault et al, 2008

In colloids 5µm particles

Ballesta et al, 2008
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Typical displacement : a = 10�2 particle diameter.

1 What mechanisms do cause such an heterogeneity ?
2 Why is there a split between “Jamming” and the maximum of �4 ?
3 Is there a specific role of friction ?
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φ* φ+ 

φ 
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Altogether… 

a frozen structure 

! What is the mechanism responsible for such heterogeneities? 
! Why is there a maximum and not just a divergence ? 

The thermal vestiges in Dynamics ?

Dynamical Signature in brass grains Lechenault et al EPL 2008

Maximum dynamic heterogeneities
on tiny scales

0.84 0.841 0.842 0.843 0.844
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1 What mechanisms do cause such an heterogeneity ?
2 Crossing the jamming transition in hard grains ?

C. Coulais Contacts Dynamics

dynamical heterogeneities 

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

Back in 2009

Maximum dynamic heterogeneities on tiny scales close to Jamming

In brass grains 5mm particles

Lechenault et al, 2008

In colloids 5µm particles

Ballesta et al, 2008
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2 Why is there a split between “Jamming” and the maximum of �4 ?
3 Is there a specific role of friction ?
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BUT 

Albeit of a very different kind : 
 no cage jumps 
 no change of neighbours 
 a* = 5.10-3 d 
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Redo the experiment with soft photoelastic 
discs => access to contacts 
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Same protocole: again a granular glass 

! A frozen structure 

 

 

 

 

 

 

 

 

Obtaining a granular glass

1 Slow logarithmic
compaction

2 Measurement of
dynamics in between
decompaction steps
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neighbors
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at � = 0.8031 :
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voronoi cells at time 5000
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Obtaining a granular glass

1 Slow logarithmic
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C. Coulais Contacts Dynamics

Pressure : from kinetic to sti↵ness

Stationnary pressure

Measurement of pressure
with vibration
without vibration
kinetic pressure

0.805 0.81 0.815 0.82
0

0.5

1
F
Mg

�

The photoelastic grains are soft.

C. Coulais Contacts Dynamics

!   But this time a glass of soft discs 
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Contact number measurement

Interparticle force measurement
thresholding
gap < ✏

!
thresholding
force > f0

0.805 0.81 0.815 0.82
2

3

4

5

z

�

Force

threshold

�J

� < �J � ⇠ �J � > �J

C. Coulais Contacts Dynamics

Signature of jamming within contacts 

φ+
 = 0.814 

φ+ 

 φ < φ+  φ > φ+ 



15 
Gulliver 

EC2M Effets Collectifs & Matière Molle    

Dynamics of the contact network… Dynamics : the contact network relaxes heterogeneously

Qz(t, ⌧) =
1

N

X

i

Qz
i (t, ⌧) where Qz

i (t, ⌧) =

(
1 if |zi (t + ⌧)� zi (t)|  1

0 if |zi (t + ⌧)� zi (t)| > 1

Qz(⌧) = hQz(t, ⌧)it

C. Coulais Contacts Dynamics

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

Contact Network Dynamics : from unjammed to jammed

Qz(t, ⌧) =
1

N

X

i

Qz
i (t, ⌧) where Qz

i (t, ⌧) =

(
1 if |zi (t + ⌧)� zi (t)|  1

0 if |zi (t + ⌧)� zi (t)| > 1

Qz(⌧) = hQz(t, ⌧)it
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…is heterogeneous and governs the grains motion Dynamics : the contact network relaxes heterogeneously

Qz(t, ⌧) =
1

N

X

i

Qz
i (t, ⌧) where Qz

i (t, ⌧) =

(
1 if |zi (t + ⌧)� zi (t)|  1

0 if |zi (t + ⌧)� zi (t)| > 1

Qz(⌧) = hQz(t, ⌧)it

C. Coulais Contacts Dynamics

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

Dynamical Heterogeneities of the contact network
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Summary: two distinct signatures Summary : two distinct crossovers !

Hard (Brass) Grains

Lechenault et al EPL 2008
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φ* φ+ φ* φ+ 

J 

γ	



Φ	



δr δz 

φ* φj ? 
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Reducing the vibration 

J 

γ	



Φ	



δr δz 

φ* φ+ 
? 

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

Decreasing the vibration !

density �

vibration
�

J

�z

�4

��

⇤

?

Three sets of experiments

f = 6.25, 7.50, 10.00Hz
If f < f0 = 4.17 Hz, no motion.

� =
f � f0

f0

15 / 26 C. Coulais Jamming at finite T
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Decreasing the vibration 
Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

Decreasing the vibration !

� &
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Hence two crossover lines : Widom lines 

J Φ	



δr 

δz 
T 

How far from the critical point ? 
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Comparison with thermal soft spheres… 

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

Back to soft spheres, but with temperature

density ��J

density �

Temperature

T

J

Jacquin et al. 2011, Berthier et al., 2011, Ikeda et al., 2012
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Thermal soft spheres : Statics and Dynamics

0
10�10
10�9
10�8
10�7
10�6

T = 10�5

�'

0.010.0050-0.005-0.01

8

6

4

2

0

T %

z

�� �J

T %

�
4

�

Berthier et al, 2011 Ikeda et al, 2012
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Ikeda et al, 2012 

Simulation of thermal soft-spheres 

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

A hint of thermometry : three measures of “temperature”

⇥ = kinetic energy

potential energy

⇠ “temperature”. Benchmark
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Discussion: in the light of the street-lamp 

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

Discussion : Can we go further ?

Where is our experiment ?

Ikeda et al, 2012
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FIG. 16: Mean square displacements. (color online). (a):
Mean square displacements MSD for filtered trajectories (see
text) vs. lag time ⌧ for both the short time (fast camera) and
long time (stroboscopic acquisition) experiments. The pack-
ing fractions explore the same range and are color coded as
in figure 5 the binning being finer for the fast camera acqui-
sition. (b): Plateau value �2 obtained from the short time
data MSD (+), from the long time stroboscopic data MSD (⇥)
and from the low frequency limit of Energy Spectral Density,
�20

f (⇤) vs. reduced packing fraction, ✏ = (� � �†)/�†. (c):
Plateau entrance time ⌧En (�-left axis) and exit time ⌧Ex

(⇤-right axis) vs. reduced packing fraction ✏ = (� � �†)/�†.
The vibration frequency f = 10 Hz, i.e � = 1.4.

packing fraction a crossover towards a di↵usive regime
at long time scales, ⌧Ex < ⌧ . The plateau regime char-
acterizes the vibrational dynamics we are interested in.
The height of the plateau, �2 measures the square of
the average vibration amplitude of the grains within
their cage. It decreases from 10�4 to 10�5 for increas-
ing packing fractions (figure 16(b)), and it is consis-
tent with the first estimate of the cage size, we had ob-
tained in section VA, from the low frequency limit of
the Fourier spectral density of the position fluctuations,
�20

f . The short time entrance to the plateau, estimated

by ⌧En = (�2/K)1/2, where K ' 10�8 is obtained from
the analysis of the ballistic regime, typically occurs at
⌧En ⇠ 100 and slightly decreases as packing fraction is
increased (figure 16(c)-left axis): the larger the packing
fraction, the sooner the grains feel their neighbors and
enter the vibrational regime. The long time exit from
the plateau, ⌧Ex ⇠ 103 � 105, violently increases with

packing fraction and exceeds the experimental time win-
dow as the packing fraction reaches �† (figure 16(c)-right
axis).

The above vibrational dynamics is very similar to the
one reported for thermal harmonic sphere systems close
to jamming [1, 41] : a ballistic regime at short time,
followed by a plateau regime, the height of which de-
creases strongly with the packing fraction when crossing
over the Jamming point. A plateau exit is also reported
in [41], where the authors show that ⌧Ex increases when
the quench rate used to prepare the packing is decreased.
This plateau exit is not reported in [1]. However the
maximum lag time, which is probed is 104 and the sys-
tems are carefully equilibrated, so that ⌧Ex, if it exists, is
probably much larger than the simulated timescales. Be-
fore coming to the more quantitative comparison, wich
will allow us to discuss wether thermal soft spheres are
a good model for mechanically excited grains, we finish
the description of the dynamics by looking at its het-
erogeneities. Note that these heterogeneities, first re-
ported in the brass grains experiment [21] and more re-
cently in the harmonic spheres simulation [1] are distinct
from those encountered in super-cooled liquids when ap-
proaching the glass transition [42]. Here the structure is
frozen, hence the heterogeneities are not related to the
relaxation of the structure. The next section will show
how they are related to the heterogeneities of the contact
dynamics described in section IVB.

VI. DYNAMICAL HETEROGENEITIES

In this section, we investigate the heterogeneities of
the particles displacements. To do so we focus on the
long time stroboscopic data, once the giggling convective
motion has been subtracted. We will show that these
heterogeneities take place at very small scales and are
temporally correlated to the heterogeneities of the con-
tact dynamics. Finally a closer look at the organisation
of the contacts at short time will demonstrate that these
heterogeneities take their root in the short time organi-
sation of the contact network, namely in the vibrational
dynamics of the structure.

A. Heterogeneous non-a�ne dynamics

The characterization of dynamical heterogeneities has
now become a standard tool in the study of the dynam-
ical slowing down of super-cooled liquids and or colloids
approaching their glass transition [42]. It is much less fre-
quently used when probing the jamming transition, but
relies on the same procedure [16]. In order to character-
ize the dynamics, and in particular to probe collective
e↵ects, one defines a dynamical structure factor for the

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion
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FIG. 21: Hard vs. Soft. (color online) Piston force (top)
and Maximal dynamical susceptibiliy of the displacements
(bottom) vs.reduced packing fraction, ✏, for (a): hard, brass,
discs [21] and (b): soft, photo-elastic, discs. (�). PTOT ,
(⇤): PSTAT , (4): PDY N as in figure 6. The vibration fre-
quency f = 10 Hz, i.e. � = 1.4. Dashed lines indicate ✏⇤ and
✏ = 0.

at the packing fraction �†. The second is ”dynamical” in
the sense that it is signed by a maximum of the dynami-
cal heterogeneities of both the contacts and the displace-
ments at a packing fraction �⇤ < �†. We have demon-
strated that the ”dynamical” crossover also takes its root
in the structure of the contact network, however it is re-
lated to the spatial fluctuations of the contacts number
whereas the ”structural” crossover is given by its aver-
age value. Both signatures converge to a unique packing
fraction when the excitation is reduced towards the zero
excitation limit. We interpret this packing fraction as
the jamming transition for the present experimental sys-
tem and compression protocole. The critical nature of
the transition is suggested by the sharp increase of the
dynamical susceptibilities when the vibration is reduced
towards the zero excitation limit. The two crossovers
can be seen as the analogs of the Widom lines reported
in the supercritical region of equilibrium phase transi-
tions [24, 45].

B. Soft vs. Hard

In an earlier experiment, within the same apparatus
but with hard (brass) discs [21, 22], the authors re-
ported the first experimental evidences of dynamical het-
erogeneities involving very small displacements of grains,
within a structure almost completely frozen. These dy-
namical heterogeneities were rather di↵erent from those
observed close to the glass transition and the authors cor-
rectly attributed their observation to jamming. However,
they could not precisely identify the underlying mecha-
nism responsible for these heterogeneities. The present
study has clearly demonstrated that they have their ori-
gin in the dynamics of the contacts network. Also, the
existence of this maximum suggested that the experiment
probed both sides of the jamming transition, a puzzling
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FIG. 22: Towards zero vibration (color online) (a): Maxi-
mum of the dynamical susceptibility of the contact max(�z

4
⇤)

for soft grains (⇥) and hard grains (�), estimated from
max(�~r

4
⇤
)/20, versus the split |✏⇤| between static and dynam-

ics signatures of Jamming. (b): MSD Plateau vs. density ✏,
for � = 0.5 (�), � = 0.8 (⇥), � = 1.4 (⇤) and for hard brass
disks at � = 1.4 (3).

conclusion given the very strong sti↵ness of the brass
discs. The present study with soft discs solves this appar-
ent contradiction in the following way. We have seen that
there are several signatures of point J at finite mechan-
ical excitation, �, and that the one associated with the
dynamical heterogeneities occurs at a lower packing frac-
tion, �⇤(�), than the one at which the average number of
contact increases, �†(�). In the case of the brass discs,
the authors reported (see figure 21(a)) that the maximum
of the dynamical heterogeneities occurs for the packing
fraction, where PDYN (�) and PSTAT (�) intersect. This
is also the case for the soft discs (see figure 21(b)): the
experiment with the brass discs had actually probed the
dynamical crossover, �⇤, both sides of which lie below
the structural signature of the jamming transition. In
the case of brass discs, it is not possible to measure the
average number of contacts. However, assuming Hertz
law, the sti↵ness of two compressed 4 mm height cylin-
ders made of brass (Young modulus, E = 100 GPa) is
kbrass ⇠ 3.108 N/m. In comparison, the sti↵ness of the
force sensor and piston system is kpiston ⇠ 6.105 N/m
and the brass grains can be considered as hard. In that
case the Jamming is the point at which the pressure di-
verges [13, 46], and the packing fraction at which the
pressure sharply increases (see figure 21(a)), provides a
good estimate of the structural crossover �†.

One also notices that the range of packing fractions
on which the crossovers are observed are very di↵erent.
The crossovers occur for lower packing fractions and on a
broader range in the case of the soft discs than in the case
of the hard ones. This is not so surprising given that the
friction coe�cient amongst the grains and between the
grain and the glass board are di↵erent. The soft discs
have a larger friction coe�cient so that their jamming
transition in the absence of vibration is expected for lower
values of the packing fraction [7]. They also have a larger
friction coe�cient with the glass board shaking them so
that the energy transfer and dissipation are di↵erent. It is
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FIG. 1: Temperature-Packing fraction phase diagram:
At zero temperature, below jamming, there is always a way
to pack the particles without overlaps and the energy of the
system is strictly zero. Above jamming, there is no packing
without overlaps and the energy, purely potential, is finite.
At finite temperature, the kinetic energy is never zero and
blurs the picture. Contacts and overlaps are always present.

ming point [1]. The authors demonstrate that there is
no singularity at finite temperature and identify a crit-
ical region in the vicinity of the Jamming point, where
vibrational dynamics is maximally heterogeneous. They
also report crossover lines, in the temperature-packing
fraction parameter space, between harmonic and non-
harmonic regimes, originating at point J. Finally, on the
basis of the dynamical behavior reported in the litera-
ture, they locate existing colloidal experiments in the
temperature-packing fraction parameter space. Their
main conclusion is that these experiments actually sit
rather far away from the critical regime of the point J.

In the past ten years, we have systematically inves-
tigated horizontally shaken grains in the vicinity of the
Jamming transition [21–24]. Starting with rigid brass
disks, we had observed very large heterogeneities of the
dynamics when focusing on minute displacements of the
order of 5⇥ 10�3 grain diameter [21–23] and it was con-
jectured that these heterogeneities were connected to the
dynamics at the contact scale. This was later confirmed
using soft photo-elastic disks [24]. In that case, the sig-
nature of the dynamical heterogeneities was not as sharp,
but it could be clearly demonstrated that the contact net-
work exhibits a remarkable dynamics, with strong het-
erogeneities, which are maximum at a packing fraction
�⇤, distinct and smaller than the packing fraction �†,
where the average number of contact per particle starts
to increase. Furthermore, we could vary the vibration
frequency and observe that these two cross-overs merge
in the zero mechanical excitation limit.

The strong similarities shared by the above experimen-
tal results with those reported in the numerical study of
thermal soft spheres [1] call for further investigations.
Indeed one would like to know to what extend thermal
harmonic spheres have anything to say about the dynam-

ical criticality of the granular packings; and conversely,
whether granular experiments can provide physical in-
sights to the ideal harmonic spheres system.

To address these questions, we present novel results
about the short time (inner vibration cycle) dynamics
of the photo-elastic soft disks and bridge the gap with
the stroboscopic dynamics studied in the previous stud-
ies [21–24]. We take this opportunity to provide a concise
and complete picture of the dynamics, the forces and the
contacts close to Jamming in the presence of mechanical
agitation. Within this context, we are able to: (i) con-
ciliate hard and soft grains experiments, (ii) locate the
granular experiment into a ”temperature”-packing frac-
tion phase diagram and, doing so, discuss the relevance
of the Jamming framework to describe granular systems.
We conclude that our granular experiments do probe the
same critical regime as the one described by Ikeda et al.
[1]. This, in turn, validates the use of soft spheres model
to describe such systems close to Jamming.

The paper is organized as follow. In section II, we de-
scribe the experimental set up in detail, insisting on the
two modes of acquisition, a fast one and a stroboscopic
one, which allow us to explore the dynamics on more than
six decades of timescales. Section III demonstrate that
the force network is essentially isotropic and Section IV
focuses on the dynamics of the contact network. This
section summarizes the results already reported in [24]
and complete them with the dynamical properties of the
contacts at short timescales. Section V is devoted to the
study of the mean square displacement. It explicitly de-
tails the data processing required to obtain a meaningful
computation of this quantity. The quantitative results
obtained in this section are the key elements of the dis-
cussion part. Section VI analyses the dynamical hetero-
geneities of the displacement filed, relate them to those of
the contact dynamics and show that they are embedded
in the structural properties of the contact network. Fi-
nally section ?? synthesizes our observations, relate them
to the previous study of brass disks experiments [21? –
23] performed in the same set-up and discuss the issue in
the introduction, regarding the correspondence between
thermal soft-spheres and vibrated grains in terms of dy-
namical behavior in the vicinity of point J.

II. SETUP AND PROTOCOL

Let us first review the details of the experimental set-
up, which was adapted from [21] in order to allow for the
use of photo-elastic grains and detection of contacts. We
also review here the di↵erent acquisition techniques, em-
phasizing in particular the fast image acquisition which
allows us to characterize the dynamics within one vibra-
tion cycle, as opposed to the previous studies, for which
one image per cycle was acquired in phase with the vi-
bration.
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vibrational dynamics is maximally heterogeneous. They
also report crossover lines, in the temperature-packing
fraction parameter space, between harmonic and non-
harmonic regimes, originating at point J. Finally, on the
basis of the dynamical behavior reported in the litera-
ture, they locate existing colloidal experiments in the
temperature-packing fraction parameter space. Their
main conclusion is that these experiments actually sit
rather far away from the critical regime of the point J.

In the past ten years, we have systematically inves-
tigated horizontally shaken grains in the vicinity of the
Jamming transition [21–24]. Starting with rigid brass
disks, we had observed very large heterogeneities of the
dynamics when focusing on minute displacements of the
order of 5⇥ 10�3 grain diameter [21–23] and it was con-
jectured that these heterogeneities were connected to the
dynamics at the contact scale. This was later confirmed
using soft photo-elastic disks [24]. In that case, the sig-
nature of the dynamical heterogeneities was not as sharp,
but it could be clearly demonstrated that the contact net-
work exhibits a remarkable dynamics, with strong het-
erogeneities, which are maximum at a packing fraction
�⇤, distinct and smaller than the packing fraction �†,
where the average number of contact per particle starts
to increase. Furthermore, we could vary the vibration
frequency and observe that these two cross-overs merge
in the zero mechanical excitation limit.

The strong similarities shared by the above experimen-
tal results with those reported in the numerical study of
thermal soft spheres [1] call for further investigations.
Indeed one would like to know to what extend thermal
harmonic spheres have anything to say about the dynam-

ical criticality of the granular packings; and conversely,
whether granular experiments can provide physical in-
sights to the ideal harmonic spheres system.

To address these questions, we present novel results
about the short time (inner vibration cycle) dynamics
of the photo-elastic soft disks and bridge the gap with
the stroboscopic dynamics studied in the previous stud-
ies [21–24]. We take this opportunity to provide a concise
and complete picture of the dynamics, the forces and the
contacts close to Jamming in the presence of mechanical
agitation. Within this context, we are able to: (i) con-
ciliate hard and soft grains experiments, (ii) locate the
granular experiment into a ”temperature”-packing frac-
tion phase diagram and, doing so, discuss the relevance
of the Jamming framework to describe granular systems.
We conclude that our granular experiments do probe the
same critical regime as the one described by Ikeda et al.
[1]. This, in turn, validates the use of soft spheres model
to describe such systems close to Jamming.

The paper is organized as follow. In section II, we de-
scribe the experimental set up in detail, insisting on the
two modes of acquisition, a fast one and a stroboscopic
one, which allow us to explore the dynamics on more than
six decades of timescales. Section III demonstrate that
the force network is essentially isotropic and Section IV
focuses on the dynamics of the contact network. This
section summarizes the results already reported in [24]
and complete them with the dynamical properties of the
contacts at short timescales. Section V is devoted to the
study of the mean square displacement. It explicitly de-
tails the data processing required to obtain a meaningful
computation of this quantity. The quantitative results
obtained in this section are the key elements of the dis-
cussion part. Section VI analyses the dynamical hetero-
geneities of the displacement filed, relate them to those of
the contact dynamics and show that they are embedded
in the structural properties of the contact network. Fi-
nally section ?? synthesizes our observations, relate them
to the previous study of brass disks experiments [21? –
23] performed in the same set-up and discuss the issue in
the introduction, regarding the correspondence between
thermal soft-spheres and vibrated grains in terms of dy-
namical behavior in the vicinity of point J.
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Let us first review the details of the experimental set-
up, which was adapted from [21] in order to allow for the
use of photo-elastic grains and detection of contacts. We
also review here the di↵erent acquisition techniques, em-
phasizing in particular the fast image acquisition which
allows us to characterize the dynamics within one vibra-
tion cycle, as opposed to the previous studies, for which
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ming point [1]. The authors demonstrate that there is
no singularity at finite temperature and identify a crit-
ical region in the vicinity of the Jamming point, where
vibrational dynamics is maximally heterogeneous. They
also report crossover lines, in the temperature-packing
fraction parameter space, between harmonic and non-
harmonic regimes, originating at point J. Finally, on the
basis of the dynamical behavior reported in the litera-
ture, they locate existing colloidal experiments in the
temperature-packing fraction parameter space. Their
main conclusion is that these experiments actually sit
rather far away from the critical regime of the point J.

In the past ten years, we have systematically inves-
tigated horizontally shaken grains in the vicinity of the
Jamming transition [21–24]. Starting with rigid brass
disks, we had observed very large heterogeneities of the
dynamics when focusing on minute displacements of the
order of 5⇥ 10�3 grain diameter [21–23] and it was con-
jectured that these heterogeneities were connected to the
dynamics at the contact scale. This was later confirmed
using soft photo-elastic disks [24]. In that case, the sig-
nature of the dynamical heterogeneities was not as sharp,
but it could be clearly demonstrated that the contact net-
work exhibits a remarkable dynamics, with strong het-
erogeneities, which are maximum at a packing fraction
�⇤, distinct and smaller than the packing fraction �†,
where the average number of contact per particle starts
to increase. Furthermore, we could vary the vibration
frequency and observe that these two cross-overs merge
in the zero mechanical excitation limit.

The strong similarities shared by the above experimen-
tal results with those reported in the numerical study of
thermal soft spheres [1] call for further investigations.
Indeed one would like to know to what extend thermal
harmonic spheres have anything to say about the dynam-

ical criticality of the granular packings; and conversely,
whether granular experiments can provide physical in-
sights to the ideal harmonic spheres system.

To address these questions, we present novel results
about the short time (inner vibration cycle) dynamics
of the photo-elastic soft disks and bridge the gap with
the stroboscopic dynamics studied in the previous stud-
ies [21–24]. We take this opportunity to provide a concise
and complete picture of the dynamics, the forces and the
contacts close to Jamming in the presence of mechanical
agitation. Within this context, we are able to: (i) con-
ciliate hard and soft grains experiments, (ii) locate the
granular experiment into a ”temperature”-packing frac-
tion phase diagram and, doing so, discuss the relevance
of the Jamming framework to describe granular systems.
We conclude that our granular experiments do probe the
same critical regime as the one described by Ikeda et al.
[1]. This, in turn, validates the use of soft spheres model
to describe such systems close to Jamming.

The paper is organized as follow. In section II, we de-
scribe the experimental set up in detail, insisting on the
two modes of acquisition, a fast one and a stroboscopic
one, which allow us to explore the dynamics on more than
six decades of timescales. Section III demonstrate that
the force network is essentially isotropic and Section IV
focuses on the dynamics of the contact network. This
section summarizes the results already reported in [24]
and complete them with the dynamical properties of the
contacts at short timescales. Section V is devoted to the
study of the mean square displacement. It explicitly de-
tails the data processing required to obtain a meaningful
computation of this quantity. The quantitative results
obtained in this section are the key elements of the dis-
cussion part. Section VI analyses the dynamical hetero-
geneities of the displacement filed, relate them to those of
the contact dynamics and show that they are embedded
in the structural properties of the contact network. Fi-
nally section ?? synthesizes our observations, relate them
to the previous study of brass disks experiments [21? –
23] performed in the same set-up and discuss the issue in
the introduction, regarding the correspondence between
thermal soft-spheres and vibrated grains in terms of dy-
namical behavior in the vicinity of point J.

II. SETUP AND PROTOCOL

Let us first review the details of the experimental set-
up, which was adapted from [21] in order to allow for the
use of photo-elastic grains and detection of contacts. We
also review here the di↵erent acquisition techniques, em-
phasizing in particular the fast image acquisition which
allows us to characterize the dynamics within one vibra-
tion cycle, as opposed to the previous studies, for which
one image per cycle was acquired in phase with the vi-
bration.
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FIG. 9: Three-dimensional ‘jamming phase diagram’ showing
the yield stress surface as a function of the thermodynamic
parameters temperatures and density, in a dimensionless rep-
resentation (particle softness kBT/ε, volume fraction ϕ, and
stress σa3/ε). The three lines represent the location of the
experimental systems discussed in Sec. III. Foams are mainly
sensitive to jamming physics, emulsions display an interest-
ing interplay between glass and jamming transitions, while
PNIPAM microgels undergo a colloidal glass transition.

tally, and solidity genuinely emerges at the jamming tran-
sition. This is the case for foams in Fig. 9 for which
the glass ‘wing’ has negligible effects. Note that PMMA
colloidal suspensions would appear at nearly the same
temperature/softness as foams in the jamming phase di-
agram of Fig. 9. However, with the particle size being
much smaller than for foams, the yield stress emerging
at the colloidal glass transition would easily be measured
experimentally, and the measurements would stop as the
jamming density is approached because the yield stress
would seem to diverge there.
As shown by the jamming phase diagram in Fig. 9,

our analysis is useful in organizing the physics of differ-
ent experimental systems. To confirm this, we have used
our additive rheological model to analyze various exper-
imental flow curves obtained for a variety of dense sus-
pensions. The systems we focussed on were PMMA col-
loids [41], aqueous foam [44], oil-in-water emulsions [47],
and PNIPAM microgels [21, 53]. We have also gathered
experimental data from other sources, in particular ultra-
soft particles composed of star polymers [62], and data for
emulsions with larger droplet sizes [49], but for brevity
the results of our analysis have not been presented in
Sec. III.
We showed that all the above experimental results can

be successfully analyzed using the additive model. It is
instructive to replot all data in a single figure using the
dimensional procedure adopted throughout this paper,
i.e. expressing stress and time scales in thermal units σT

and τT, see Eqs. (3, 5). These flow curves are collected
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FIG. 10: Superposition of experimental flow curves for dif-
ferent materials using thermal units. PMMA colloids with
a = 0.36µm, after Petekidis et al. [41]. Foam with a = 27µm,
after Herzhaft et al. [44]. Emulsion(a) with a = 0.5µm, after
Mason et al. [47]. PNIPAM(a) with a = 0.2µm, after Carrier
et al. [21]. PNIPAM(b) with a = 1.2µm, after Nordstrom et
al. [21]. Star polymers with a = 0.07µm, after Koumakis et
al. [62]. Emulsion(b) with a = 8µm, after Otsubo et al. [49].

in Fig. 10. In this representation, the flow curves for
PMMA colloids, star polymers, PNIPAM microgels lie in
the same sector, which corresponds to the thermal sec-
tor in our model; see Fig. 2. Therefore, the formation of
amorphous solids in these systems stems from the physics
of the colloidal glass transition. On the other hand, foams
lie outside this regime and are controlled, accordingly,
by the jamming transition. Interestingly, emulsions lie
somewhat in between and so are influenced by both types
of physics, as discussed in Sec. III D. Note in particular
that emulsions with larger droplet sizes, also shown in
Fig. 10, could be useful systems to fill the gap between
colloids and foams. While experimental studies of micro-
gel particles have been interpreted from the point of view
of the jamming transition [21], our analysis shows that
for these soft colloidal particles the physics of jamming
has, in fact, only a negligible effect. A similar conclu-
sion has recently been reached based on the analysis of
the short-time vibrational dynamics in the amorphous
phase [55].
Our conclusion that glass and jamming rheologies be-

long to different sectors and contribute linearly to the
shear stress is directly supported by the numerical flow
curves obtained for harmonic spheres, and by the analysis
of the oil-in-water emulsions in Sec. III D which clearly
showed the complex features also observed in the simu-
lations. We mentioned that similar indications are also
found for PMMA colloids, in particular at large Péclet
number and larger density, while microgel suspensions
appear less well suited for a detailed experimental in-
vestigations of the interplay between glass and jamming
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stress σa3/ε). The three lines represent the location of the
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ing interplay between glass and jamming transitions, while
PNIPAM microgels undergo a colloidal glass transition.

tally, and solidity genuinely emerges at the jamming tran-
sition. This is the case for foams in Fig. 9 for which
the glass ‘wing’ has negligible effects. Note that PMMA
colloidal suspensions would appear at nearly the same
temperature/softness as foams in the jamming phase di-
agram of Fig. 9. However, with the particle size being
much smaller than for foams, the yield stress emerging
at the colloidal glass transition would easily be measured
experimentally, and the measurements would stop as the
jamming density is approached because the yield stress
would seem to diverge there.
As shown by the jamming phase diagram in Fig. 9,

our analysis is useful in organizing the physics of differ-
ent experimental systems. To confirm this, we have used
our additive rheological model to analyze various exper-
imental flow curves obtained for a variety of dense sus-
pensions. The systems we focussed on were PMMA col-
loids [41], aqueous foam [44], oil-in-water emulsions [47],
and PNIPAM microgels [21, 53]. We have also gathered
experimental data from other sources, in particular ultra-
soft particles composed of star polymers [62], and data for
emulsions with larger droplet sizes [49], but for brevity
the results of our analysis have not been presented in
Sec. III.
We showed that all the above experimental results can
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instructive to replot all data in a single figure using the
dimensional procedure adopted throughout this paper,
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ferent materials using thermal units. PMMA colloids with
a = 0.36µm, after Petekidis et al. [41]. Foam with a = 27µm,
after Herzhaft et al. [44]. Emulsion(a) with a = 0.5µm, after
Mason et al. [47]. PNIPAM(a) with a = 0.2µm, after Carrier
et al. [21]. PNIPAM(b) with a = 1.2µm, after Nordstrom et
al. [21]. Star polymers with a = 0.07µm, after Koumakis et
al. [62]. Emulsion(b) with a = 8µm, after Otsubo et al. [49].

in Fig. 10. In this representation, the flow curves for
PMMA colloids, star polymers, PNIPAM microgels lie in
the same sector, which corresponds to the thermal sec-
tor in our model; see Fig. 2. Therefore, the formation of
amorphous solids in these systems stems from the physics
of the colloidal glass transition. On the other hand, foams
lie outside this regime and are controlled, accordingly,
by the jamming transition. Interestingly, emulsions lie
somewhat in between and so are influenced by both types
of physics, as discussed in Sec. III D. Note in particular
that emulsions with larger droplet sizes, also shown in
Fig. 10, could be useful systems to fill the gap between
colloids and foams. While experimental studies of micro-
gel particles have been interpreted from the point of view
of the jamming transition [21], our analysis shows that
for these soft colloidal particles the physics of jamming
has, in fact, only a negligible effect. A similar conclu-
sion has recently been reached based on the analysis of
the short-time vibrational dynamics in the amorphous
phase [55].
Our conclusion that glass and jamming rheologies be-

long to different sectors and contribute linearly to the
shear stress is directly supported by the numerical flow
curves obtained for harmonic spheres, and by the analysis
of the oil-in-water emulsions in Sec. III D which clearly
showed the complex features also observed in the simu-
lations. We mentioned that similar indications are also
found for PMMA colloids, in particular at large Péclet
number and larger density, while microgel suspensions
appear less well suited for a detailed experimental in-
vestigations of the interplay between glass and jamming

Fc ~ 1/(ΦJ-Φ) 

X k = 7 N /mm 
X k = 110 N/mm 
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In the intermittent regime : signature of Jamming 
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Pinning-depinning like dynamics => Crackling noise signals 

νβ

ηα

φφφξ
φξ

φφφθ
φθ

-)1(

/1

-)1(

 )(  );
)(

()(

 )(  );
)(

()(

J

z

J

LfLLpdf

TL

TfTTpdf

−∝∝

∝

−∝∝

+−

+−

η=2/3 

ν=1 



31 
Gulliver 

EC2M Effets Collectifs & Matière Molle    10/06/14 

Instantaneous field around the intruder 

u  A very heterogeneous and intermittent field 

 

u  More and more chained-like clusters 

!   <nneigh> goes from 4 to 5.5 

!   fractal dim. of the contour goes from 1.3 to 1.5 

Typical contours of clusters of the 15% fastest 
particles 
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Averaged displacement field around the  intruder 

u  Two symmetric vortices on  both side of the intruder 

  

u  No sharp evidence of the transition in the averaged field 

u  Exponential decrease of <vx> with distance from the intruder :  

   

  the associated length scale does not depend on Φ. 
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Probing elasticity : set up 

! Prepare the system at large 
packing fraction under 
vibration 

! Inflate an intruder in the 
center (the vibration is 
stopped) 

! Decrease the packing fraction 
while vibrating 

! iterate 

R0 - > R0 + a 
γ = a/R0 
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Probing elasticity : the linear elastic framework 

! Nota Bene 
!   In the limit of large R1, A->0, B->1 : this is a shear test! 

!   G and K are simply obtained by the ratio of the stress and strain tensor 
invariants 

R0
a + R0

R1

! U
! ε
!

(er, eθ, ez)

! U U = U(r)er
! r = R0 U(R0) = a
! r = R1 U(R1) = 0
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For each packing fraction and each a/R0 

!   

δ=Tr(ε) γ=J2(ε) 

P=Tr(σ) τ=J2(σ) 
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FIG. 2: Maps of the strain and stress invariants. (color
online) Maps of dilation, ε ,(a), shear strain, γ, (b), pressure,
P , (c) and shear stress, τ , (d), for φ = 0.8294 and a∗ = 4.4×
10−2. The uncolored grains are the location of the pneumatic
tube connected to the intruder, which masks the field of view.

a∗ = 4.4 × 10−2. Apart from the spatial fluctuations,
inherent to the local response of a disordered material,
one observes that the axisymmetry of the loading is con-
served in the response. Also the response intensity de-
creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
The second significant observation is that the pressure
deviates significantly from the elastic response : there
are regions of intense pressure, which do not correspond
to any sort of intense compression. This pressure field is
thus induced by the shear; it is the signature of dilatancy
for an experiment conducted at constant volume, a well
known effect in granular media [28]. Finally whereas the
spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
tions were qualitatively similar for all packing fractions.
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FIG. 3: Constitutive laws. (color online) Pressure ("),
P (a), and shear stress (!), τ (b), vs. shear strain, γ, for
21 packing fractions φ ∈ [0.8102 − 0.8343]. Each data point
result from a binning of the scatter plots P (r, θ) and τ(r, θ)
vs. γ(r, θ), where (r, θ) are the polar coordinates. The solid
lines are given by Eqs. (1-2). Color code spans from blue to
red with increasing packing fractions. (c) and (d): same data
as (a) and (b) rescaled by γc(φ), Pc(φ) and τc(φ). The solid
lines are given by the rescaled version of Eqs. (1-2) and the
dashed lines indicate the asymptotic regimes.

Constitutive laws — We now come to the quantita-
tive analysis of the constitutive laws τ(γ,φ) and P (γ,φ)
which were obtained from collecting all data points into
averages corresponding to binned values of γ. Fig 3(a)
and (b) display the shear stress τ and pressure P versus
the shear strain γ for all the packing fractions probed
here. Below jamming, both the shear stress τ and the
pressure P exhibit the simple expected dependence on
the shear strain: τ = 2G0γ, and P = R0γ2. Above jam-
ming non linearities take place in the form of a significant
shear softening of both the shear modulus and the dila-
tancy. We find that the best description of the data is
given by

P = [R0 +Rnl(∆φ, γ)] γ2 (1)

τ = 2 [G0 +Gnl(∆φ, γ)] γ (2)

with ∆φ = φ − φJ , G0 = 6.0 ± 0.2 × 10−2, R0 = 1.2 ±
0.1× 101 and

Rnl(∆φ, γ) =

{
0 forφ < φJ

a∆φµγα−2 forφ > φJ
,

Gnl(∆φ, γ) =

{
0 forφ < φJ

b∆φνγβ−1 forφ > φJ
,

with µ = 1.7±0.1, α = 1.0±0.1, a = 8.1±0.3×10−2, ν =
1.0 ± 0.1, β = 0.4 ± 0.1, b = 7.5 ± 0.3 × 10−1. From the
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P , (c) and shear stress, τ , (d), for φ = 0.8294 and a∗ = 4.4×
10−2. The uncolored grains are the location of the pneumatic
tube connected to the intruder, which masks the field of view.

a∗ = 4.4 × 10−2. Apart from the spatial fluctuations,
inherent to the local response of a disordered material,
one observes that the axisymmetry of the loading is con-
served in the response. Also the response intensity de-
creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
The second significant observation is that the pressure
deviates significantly from the elastic response : there
are regions of intense pressure, which do not correspond
to any sort of intense compression. This pressure field is
thus induced by the shear; it is the signature of dilatancy
for an experiment conducted at constant volume, a well
known effect in granular media [28]. Finally whereas the
spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
tions were qualitatively similar for all packing fractions.
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P (a), and shear stress (!), τ (b), vs. shear strain, γ, for
21 packing fractions φ ∈ [0.8102 − 0.8343]. Each data point
result from a binning of the scatter plots P (r, θ) and τ(r, θ)
vs. γ(r, θ), where (r, θ) are the polar coordinates. The solid
lines are given by Eqs. (1-2). Color code spans from blue to
red with increasing packing fractions. (c) and (d): same data
as (a) and (b) rescaled by γc(φ), Pc(φ) and τc(φ). The solid
lines are given by the rescaled version of Eqs. (1-2) and the
dashed lines indicate the asymptotic regimes.

Constitutive laws — We now come to the quantita-
tive analysis of the constitutive laws τ(γ,φ) and P (γ,φ)
which were obtained from collecting all data points into
averages corresponding to binned values of γ. Fig 3(a)
and (b) display the shear stress τ and pressure P versus
the shear strain γ for all the packing fractions probed
here. Below jamming, both the shear stress τ and the
pressure P exhibit the simple expected dependence on
the shear strain: τ = 2G0γ, and P = R0γ2. Above jam-
ming non linearities take place in the form of a significant
shear softening of both the shear modulus and the dila-
tancy. We find that the best description of the data is
given by

P = [R0 +Rnl(∆φ, γ)] γ2 (1)

τ = 2 [G0 +Gnl(∆φ, γ)] γ (2)

with ∆φ = φ − φJ , G0 = 6.0 ± 0.2 × 10−2, R0 = 1.2 ±
0.1× 101 and

Rnl(∆φ, γ) =

{
0 forφ < φJ

a∆φµγα−2 forφ > φJ
,

Gnl(∆φ, γ) =

{
0 forφ < φJ

b∆φνγβ−1 forφ > φJ
,

with µ = 1.7±0.1, α = 1.0±0.1, a = 8.1±0.3×10−2, ν =
1.0 ± 0.1, β = 0.4 ± 0.1, b = 7.5 ± 0.3 × 10−1. From the
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P , (c) and shear stress, τ , (d), for φ = 0.8294 and a∗ = 4.4×
10−2. The uncolored grains are the location of the pneumatic
tube connected to the intruder, which masks the field of view.

a∗ = 4.4 × 10−2. Apart from the spatial fluctuations,
inherent to the local response of a disordered material,
one observes that the axisymmetry of the loading is con-
served in the response. Also the response intensity de-
creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
The second significant observation is that the pressure
deviates significantly from the elastic response : there
are regions of intense pressure, which do not correspond
to any sort of intense compression. This pressure field is
thus induced by the shear; it is the signature of dilatancy
for an experiment conducted at constant volume, a well
known effect in granular media [28]. Finally whereas the
spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
tions were qualitatively similar for all packing fractions.
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vs. γ(r, θ), where (r, θ) are the polar coordinates. The solid
lines are given by Eqs. (1-2). Color code spans from blue to
red with increasing packing fractions. (c) and (d): same data
as (a) and (b) rescaled by γc(φ), Pc(φ) and τc(φ). The solid
lines are given by the rescaled version of Eqs. (1-2) and the
dashed lines indicate the asymptotic regimes.

Constitutive laws — We now come to the quantita-
tive analysis of the constitutive laws τ(γ,φ) and P (γ,φ)
which were obtained from collecting all data points into
averages corresponding to binned values of γ. Fig 3(a)
and (b) display the shear stress τ and pressure P versus
the shear strain γ for all the packing fractions probed
here. Below jamming, both the shear stress τ and the
pressure P exhibit the simple expected dependence on
the shear strain: τ = 2G0γ, and P = R0γ2. Above jam-
ming non linearities take place in the form of a significant
shear softening of both the shear modulus and the dila-
tancy. We find that the best description of the data is
given by

P = [R0 +Rnl(∆φ, γ)] γ2 (1)

τ = 2 [G0 +Gnl(∆φ, γ)] γ (2)

with ∆φ = φ − φJ , G0 = 6.0 ± 0.2 × 10−2, R0 = 1.2 ±
0.1× 101 and

Rnl(∆φ, γ) =

{
0 forφ < φJ

a∆φµγα−2 forφ > φJ
,

Gnl(∆φ, γ) =

{
0 forφ < φJ

b∆φνγβ−1 forφ > φJ
,

with µ = 1.7±0.1, α = 1.0±0.1, a = 8.1±0.3×10−2, ν =
1.0 ± 0.1, β = 0.4 ± 0.1, b = 7.5 ± 0.3 × 10−1. From the
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P , (c) and shear stress, τ , (d), for φ = 0.8294 and a∗ = 4.4×
10−2. The uncolored grains are the location of the pneumatic
tube connected to the intruder, which masks the field of view.

a∗ = 4.4 × 10−2. Apart from the spatial fluctuations,
inherent to the local response of a disordered material,
one observes that the axisymmetry of the loading is con-
served in the response. Also the response intensity de-
creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
The second significant observation is that the pressure
deviates significantly from the elastic response : there
are regions of intense pressure, which do not correspond
to any sort of intense compression. This pressure field is
thus induced by the shear; it is the signature of dilatancy
for an experiment conducted at constant volume, a well
known effect in granular media [28]. Finally whereas the
spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
tions were qualitatively similar for all packing fractions.
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P (a), and shear stress (!), τ (b), vs. shear strain, γ, for
21 packing fractions φ ∈ [0.8102 − 0.8343]. Each data point
result from a binning of the scatter plots P (r, θ) and τ(r, θ)
vs. γ(r, θ), where (r, θ) are the polar coordinates. The solid
lines are given by Eqs. (1-2). Color code spans from blue to
red with increasing packing fractions. (c) and (d): same data
as (a) and (b) rescaled by γc(φ), Pc(φ) and τc(φ). The solid
lines are given by the rescaled version of Eqs. (1-2) and the
dashed lines indicate the asymptotic regimes.

Constitutive laws — We now come to the quantita-
tive analysis of the constitutive laws τ(γ,φ) and P (γ,φ)
which were obtained from collecting all data points into
averages corresponding to binned values of γ. Fig 3(a)
and (b) display the shear stress τ and pressure P versus
the shear strain γ for all the packing fractions probed
here. Below jamming, both the shear stress τ and the
pressure P exhibit the simple expected dependence on
the shear strain: τ = 2G0γ, and P = R0γ2. Above jam-
ming non linearities take place in the form of a significant
shear softening of both the shear modulus and the dila-
tancy. We find that the best description of the data is
given by

P = [R0 +Rnl(∆φ, γ)] γ2 (1)

τ = 2 [G0 +Gnl(∆φ, γ)] γ (2)

with ∆φ = φ − φJ , G0 = 6.0 ± 0.2 × 10−2, R0 = 1.2 ±
0.1× 101 and

Rnl(∆φ, γ) =

{
0 forφ < φJ

a∆φµγα−2 forφ > φJ
,

Gnl(∆φ, γ) =

{
0 forφ < φJ

b∆φνγβ−1 forφ > φJ
,

with µ = 1.7±0.1, α = 1.0±0.1, a = 8.1±0.3×10−2, ν =
1.0 ± 0.1, β = 0.4 ± 0.1, b = 7.5 ± 0.3 × 10−1. From the
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Parametric plot of stress vs strain 

! µ = 1.7    α = 1.0	



! ν = 1.0    β = 0.4	



! => 	

  	

     ζ=1.7	
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FIG. 2: Maps of the strain and stress invariants. (color
online) Maps of dilation, ε ,(a), shear strain, γ, (b), pressure,
P , (c) and shear stress, τ , (d), for φ = 0.8294 and a∗ = 4.4×
10−2. The uncolored grains are the location of the pneumatic
tube connected to the intruder, which masks the field of view.

a∗ = 4.4 × 10−2. Apart from the spatial fluctuations,
inherent to the local response of a disordered material,
one observes that the axisymmetry of the loading is con-
served in the response. Also the response intensity de-
creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
The second significant observation is that the pressure
deviates significantly from the elastic response : there
are regions of intense pressure, which do not correspond
to any sort of intense compression. This pressure field is
thus induced by the shear; it is the signature of dilatancy
for an experiment conducted at constant volume, a well
known effect in granular media [28]. Finally whereas the
spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
tions were qualitatively similar for all packing fractions.
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Constitutive laws — We now come to the quantita-
tive analysis of the constitutive laws τ(γ,φ) and P (γ,φ)
which were obtained from collecting all data points into
averages corresponding to binned values of γ. Fig 3(a)
and (b) display the shear stress τ and pressure P versus
the shear strain γ for all the packing fractions probed
here. Below jamming, both the shear stress τ and the
pressure P exhibit the simple expected dependence on
the shear strain: τ = 2G0γ, and P = R0γ2. Above jam-
ming non linearities take place in the form of a significant
shear softening of both the shear modulus and the dila-
tancy. We find that the best description of the data is
given by

P = [R0 +Rnl(∆φ, γ)] γ2 (1)

τ = 2 [G0 +Gnl(∆φ, γ)] γ (2)

with ∆φ = φ − φJ , G0 = 6.0 ± 0.2 × 10−2, R0 = 1.2 ±
0.1× 101 and

Rnl(∆φ, γ) =

{
0 forφ < φJ

a∆φµγα−2 forφ > φJ
,

Gnl(∆φ, γ) =

{
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,

with µ = 1.7±0.1, α = 1.0±0.1, a = 8.1±0.3×10−2, ν =
1.0 ± 0.1, β = 0.4 ± 0.1, b = 7.5 ± 0.3 × 10−1. From the
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a∗ = 4.4 × 10−2. Apart from the spatial fluctuations,
inherent to the local response of a disordered material,
one observes that the axisymmetry of the loading is con-
served in the response. Also the response intensity de-
creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
The second significant observation is that the pressure
deviates significantly from the elastic response : there
are regions of intense pressure, which do not correspond
to any sort of intense compression. This pressure field is
thus induced by the shear; it is the signature of dilatancy
for an experiment conducted at constant volume, a well
known effect in granular media [28]. Finally whereas the
spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
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ming non linearities take place in the form of a significant
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given by
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above relations, one obtains the rescaling shown in fig-
ure 3(c),(d) with γc ∼ ∆φζ , τc = 2G0γc and Pc = R0γ2

c .
Despite the fact that the couples of exponents (µ,α)
and (ν,β) have been obtained independently, we obtain
that ζ = µ/(2 − α) and ζ = ν/(1 − β) lead to the
same value ζ = 1.7 as it should be. The above equa-
tions and the related scaling are the key results of the
present study. To our knowledge, this is the first time
that non linear elasticity is quantified precisely approach-
ing the jamming transition of a granular packing. Note
that the ”linear” regime observed here should not be
confused with the linear response and should rather be
seen as a saturation of the nonlinearities. For very small
strain, (γ # 10−6), such as those probed in numerical
studies [3, 36], and much smaller than the lowest strain
probed here (γ # 10−3), one expects to recover a linear
response for all ∆φ > 0 [23]. For strains of experimental
relevance, very recent numerical studies have reported a
crossover from the linear response at small strains to a
shear softening regime, with a exponent β # 0.5 [37, 38],
compatible with the present results.
Shear strain profiles — We finally proceed to a self-

consistency check by integrating the condition of mechan-
ical equilibrium ∇ · σ = 0, with the above constitutive
laws to derive the expected shear strain profiles and com-
pare them with those obtained experimentally. We intro-
duce here the reduced shear strain γ̃ = γ/γc. Axisym-
metry ensures that σ is diagonal in polar coordinate and
independent of the azimuthal coordinate θ. ∇ · σ = 0
thus reads:

Pc(αγ̃α−1 + 2γ̃) + τc(βγ̃β−1 + 1)

γ̃β + γ̃
dγ̃ = −2τc

dr

r
(3)

We integrate numerically Eq. 3 with the boundary con-
dition γ̃(r = rI) = a∗/γc and we obtain the profiles plot-
ted in figure 4(a), together with the experimental data.
The agreement is very satisfactory, given the absence of
any adjustable parameter and the fact that we have ne-
glected the confinement at large r. For intermediate val-
ues of ∆φ and a∗, the crossover of the constitutive law
translates into a spatial crossover with a characteristic
length rc between the saturated linear regime for r < rc,
close to the inflater, and the truly non linear regime for
r > rc. An estimate of rc can be derived by integrating
the above equation in the saturated linear regime and
selecting γ = γc (γ̃ = 1) :

rc
rI

=

(
a∗

γc

)1/2

exp

[
R0

2G0
a∗

(
1− γc

a∗

)]
. (4)

In the limit, γc → 0, approaching jamming, rc ∼ γ−1/2
c ∼

∆φ−0.85. One can indeed observe the emergence of this
singular behavior on figure 4(b), together with the expo-
nential regularization at large ∆φ.
Summary-Discussion — Our measurements provide a

quantitative characterization of the elastic response of
a bi-dimensional packing of grains to the local inflation

0 2 4 6 8 10
10−4

10−3

10−2

10−1
γγγ

r

rI

0 0.005 0.01
0

2

4

6

8

10

10−3 10−2
100

101rc
rI

∆φ

−0.85

1

(a) (b)

FIG. 4: Shear strain profiles (color online) (a): Shear
strain profile for (!) (φ = 0.8208; a∗ = 0.0374), (!) (φ =
0.8268; a∗ = 0.0314) and (#) (φ = 0.8338; a∗ = 0.0306). The
symbols are experimental data and the solid lines come from
the integration of eq.(3). The green dashed line indicates the
crossover for the case (φ = 0.8268; a∗ = 0.0314) (b): Spa-
tial crossover rc(φ, a

∗)/rI (for a∗ = 0.0208 (green), 0.0440
(turquoise) and 0.0681 (blue) extracted from the experimen-
tal profiles (×) and obtained numerically from eq. (3) (dashed
lines). (Inset): same in log-log axis with the predicted scal-
ing rc ∼ ∆φ−0.85. In both figures, the gray zone is the region
occupied by the inflater.

of an intruder close to jamming. This specific geome-
try actually probes the response to an inhomogeneous
shear at constant volume. Our results highlight the effect
of dilatancy and unveil a nonlinear regime above jam-
ming where both the shear modulus and the dilatancy
coefficient soften. The importance of shear dilatancy in
marginal solids was recently emphasized in [39], where
it was shown that the Reynolds coefficient at constant
volume RV ∼ ∆φ−1/2. Here we also observe a singular
behavior, albeit of a different kind since the present ex-
periment probes the nonlinear softening of the dilatancy.
In a different context, Ren et al. [30] report a steep in-
crease of dilatancy under homogeneous shear as the den-
sity of an unjammed packing of grains is increased. The
dilatancy coefficient R0 reported here is indeed very large
(R0 ∼ 104 N/m) and could be seen as a saturation of the
divergence reported in [30].

Finally, the present study uncovers a length scale, rc,
which separates the nonlinear regime from the saturated
linear one. Its scaling with the distance to jamming does
not match any scaling reported before for length scales
of linear origin, such as )∗ or )c. This suggests that rc
could encompass crucial information about the density
of the low energy non-linear excitations reported recently
for sphere packings [24]. Further insights in this mat-
ter could come from simulations of point-like response
of the kind reported in [7] albeit in the non linear regime.
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Conclusion 
! Vibrated granular media are suitable tools for probing the vicinity of 

jamming, (in particular low enough T_eff) 

! Two distinct crossovers (one dynamical, one structural) converge toward 
J-point in the limit of low vibration 

! Pulling an intruder in vibrated hard discs has allowed us to probe the yield 
stress of “thermal origin” and reveals complex pinning – depinning like 
dynamics 

! Inflating an intruder in soft photo-elastic discs => Non linear rheology  

! Thank you! 
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!   Soft Matter, 6 (13), 3059–3064, (2010). 

! Phys Rev Lett 103 12800 (2009). 
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