

Microstructure of a plastic flow before failure

A.Le Bouil, A.Amon, S.McNamara, J.Crassous Institut de Physique de Rennes Université Rennes 1, France

with the collaboration of:

J.C.Sangleboeuf, H.Orain, **M.Erpelding**, P.Chasle Institut de Physique de Rennes, Université Rennes 1, France

C.Viggiani, P.Bésuelle 3S-R, Université Grenoble, France

Plasticity and failure of amorphous material

Amorphous and athermal material : Foam, granular material, metallic glasses, ...

Deformations of amorphous and athermal material :

Kabla (2003)

Desrue et al. (2002)

Klaumünzer et al (2011)

Strain localization

M.W.Chen (2008)

Desrues et al (2002)

H.Herrman

Plasticity to localization

Dense colloids Schall, Weitz, Spaepen (2007)

D.Rodney et al. (2009)

Falk (1998)

Plastic properties of metallic glasses may be understood with the hypothesis of localized plastic events [Argon (1979)]

> -localized plastic events -Elastic Coupling

Strain localization

State of the art

- Many mumerical/theoritical studies
- Experiments : -localized events,

- very few clear « evidence » of coupling

• Vizualization of coupling ?

• Link between elastic events and band formation ?

Outline

- Introduction
- Experimental setup
 - -Mechanical part
 - -Detection of fluctuations of deformation
- A typical experiment
- Permanent shear band (the end)
- Transient structure (the beginning)
 - -Structure
 - -Micromechanical model
- From transient to permanent shear band ?

Experimental setup : mechanical setup

Biaxial stress test:

- -Well described in geomechanics
- -Homogeneous applied stress
- -Elongational flow of hard spheres

- -Material: glass beads d=100µm
- -Confining pressure + applied pressure
- -Relative deformation - $\Delta L/L$ = ϵ
- -Compression at $d\epsilon/dt \sim 10^{-5} s^{-1}$
- -No cohesion, no grain breaking,...

A.Le Bouil et al., Gran.Mat. 16 1 (2014)

Experimental setup : Maps of deformations

Correlation maps between two successive images $g_1 = \langle I_1 I_2 \rangle / \langle I_1 \rangle \langle I_2 \rangle - 1$

Color code: -White: $g_I = 1$ local deformation $\mathcal{E} < 10^{-6}$ -Red $g_I = 0$

local deformation $\varepsilon > 10^{-4}$

M.Erpelding PhD thesisM.Erpelding et al, PRE 78, 046104 (2008)

- Only volume near surface (depth few d) is probed

- Very sensitive method (deformation $\sim 10^{\text{-6}}$ - $10^{\text{-4}}$, ...)

A typical experiment

Stress-deformation curve

Permanent shear band (the end) - Mohr-Coulomb analysis

Plastic flow before failure: transient

Plastic flow before failure: structure

Snapshot of the plastic flow: $g_{I}(\epsilon,r)$

Spatial correlation function of plastic flow $\psi(\varepsilon,\mathbf{r}) = \langle g_{I}(\varepsilon,\mathbf{r}') g_{I}(\varepsilon,\mathbf{r}+\mathbf{r}') \rangle \langle g_{I}(\varepsilon,\mathbf{r}') \rangle \langle g_{I}(\varepsilon,\mathbf{r}+\mathbf{r}') \rangle$

- -The plastic flow is structured
- Directionality $\theta_{\rm F}$ =+/- 50-54°
- $\psi(\epsilon,r)$ increases as loading progresses
- Very different from rupture (permanent, θ_{MC} =+/- 64°)

Micro-structure of the plastic flow

Model : material treated as a <u>continuous</u> <u>isotropic</u> <u>elastic</u> matrix

B.Behringer

Eshelby inclusion problem

Micro-structure of the plastic flow

$$\sigma_{xx} + \tilde{\sigma}_{xx} - (\sigma_{yy} + \tilde{\sigma}_{yy}) = \sigma_{xx} - \sigma_{yy} + Cf(\theta)$$

 $f(\theta) = (e_{xx}^* - e_{yy}^*) \left[-\frac{15}{4} \cos(4\theta) + \frac{8\nu - 7}{4} \right] - \frac{9}{2} (e_{xx}^* + e_{yy}^*) \cos(2\theta)$

 $f(\theta) > 0$: additionnal stress adds to the applied stress

Maximum of f(θ) for angle θ_{E}^{*} : $\cos(2\theta_{E}^{*}) = \frac{3}{10} \frac{e_{yy}^{*} + e_{xx}^{*}}{e_{yy}^{*} - e_{xx}^{*}}$

$$e_{xx}^* + e_{yy}^* = 0$$
 $\theta_E^* = \pm 45^\circ; \pm 135^\circ$
 $|e_{xx}^*| >> |e_{yy}^*|$ $\theta_E^* \approx \pm 54^\circ; \pm 126^\circ$

Micro-structure of the plastic flow

Spatial correlation function of plastic flow $\psi(\varepsilon,\mathbf{r}) = \langle g_{\tau}(\varepsilon,\mathbf{r}') g_{\tau}(\varepsilon,\mathbf{r}+\mathbf{r}') \rangle \langle g_{\tau}(\varepsilon,\mathbf{r}') \rangle \langle g_{\tau}(\varepsilon,\mathbf{r}+\mathbf{r}') \rangle$

$$\cos(2\theta_E^*) = \frac{3}{10} \frac{e_{yy}^* + e_{xx}^*}{e_{yy}^* - e_{xx}^*}$$

Confirmed by numerical Discrete Element Method simulations

N.Guo & J.Zhao, PRE 89, 042208 (2014)

From isolated events to shear band

Coupling along +/- θ_{r} increases as system approaches failure

Anisotropy characterization: $\chi(\epsilon, r) = \frac{1}{2} [\Psi(\epsilon, r, \theta_E) + \Psi(\epsilon, r, -\theta_E)]$ $-\Psi_{iso}(\epsilon, r)$

From isolated events to shear band

The locus of rearrangement shows some spatial correlation from one event to the next, **but these correlations decay quickly after just a few plastic events** (...). We observe no evidence for the kinds of pronounced persistent shear localization which is seen in many experiments and simulations (...) we find it likely that **the persistent localization observed elsewhere is due**

largely to effects of the boundary.

• Maloney & Lemaître. PRE (2006)

Conclusion

- -Transient & oriented structure
- -Agreement with Eshelby-like structure
- -Increase of elastic coupling
- -Only indirect link with the failure

150d

References : • A.Le Bouil et al., Gran.Mat. 16 1 (2014) (experimental setup) • A.Le Bouil et al.,arXiv - PRL, in press (2014) (structure of plastic flow)

see also :

- M.Erpelding et al, PRE 78, 046104 (2008) (spatialy resolved DWS setup)
 - A.Amon et al, PRL 108, 135502 (2012) (A creep flow)
 - A.Amon et al, PRE 87, 012204 (2013) (Failures in inclined plane)

http://perso.univ-rennes1.fr/jerome.crassous/