

A microscopic view of the yielding transition in concentrated emulsions

Soft Matter, (2014), DOI: 10.1039/c4sm00531g arXiv:1403.4433

Elizabeth D. Knowlton¹, David J. Pine¹, Luca Cipelletti²

¹ Center for Soft Matter Research, New York University, NY 10003, USA
² L2C UMR 5221 Université Montpellier 2 and CNRS, Montpellier, France

Yielding of concentrated emulsions

Questions

• Microscopic picture of yielding: cristalline solids OK (defects), what about amorphous solids?

• Oscillatory drive: very few simulations and experiments! BUT relevant to rheology and fatigue tests, easier to detect irreversible rearrangements

• Relation to reversible-irreversible transition in complex fluids?

Oscillatory drive: DWS echo

- the same, small fraction of drops undergo irreversible rearrangements at each cycle
- the fraction of rearranged drops increases with γ
- at yielding, just a few % of drops undergo an irreversible rearrangement
- need to make (strong) assumptions on the nature of motion, no spatial/temporal resolution...

The reversible-irreversible transition: revisiting Taylor's experiment

New Mexico University – http://youtu.be/p08_KlTKP50

Suspension of (non-Brownian) particles

Corte et al, Nature Physics 2008

Suspension of (non-Brownian) particles

2nd order dynamical transition

Dense/strongly interacting systems

Yielding and microstructure in a 2D jammed material under shear deformation[†]

Soft Matter, 2013, 9, 6222

Nathan C. Keim and Paulo E. Arratia*

PHYSICAL REVIEW E 88, 020301(R) (2013)

Oscillatory athermal quasistatic deformation of a model glass

Davide Fiocco, 1,* Giuseppe Foffi, 1,2,† and Srikanth Sastry 3,4,‡

Same behavior as in Pine's experiments??

Confined colloids w/ hydrodynamic interactions: 1st order transition??

R. Jeanneret and D. Bartolo, Nature Comm. 2014

Back to our drops...

Emulsion : PDMS oil + TMN-10 in H₂0 + glycerol $2r = 2.4 \mu m$, polidispersity = 20% $\varphi = 65 - 88\%$

Microscopy : 100x DIC, gap ~100 µm

Visualizing the emulsion

123 µm

Motion analysis (over one cycle) : Image Correlation Velocimetry (PIV-like) coarse graining $\sim 3.8 \ \mu m$, resolution $\sim 10 \ nm$

Rheology: strain sweep ($\varphi = 0.83$)

"fluidization" strain (G' = G")

Yielding transition: very smooth!

Microscopy: rms displacement

Yielding transition: quite sharp (especially at high φ)

Microscopic vs macroscopic yielding

Microscopic yielding corresponds to macroscopic onset of non-linearity

Motion is heterogeneous

Fig. 4 Difference between two successive strobed images: regions where motion occurred show up as features brighter or dimmer than the average background, while immobile regions are featureless. For each sample, the applied strain is just above the yield strain γ_y .

Probability distribution of drop displacements

Abrupt change at the yielding transition (compare $\gamma = 6.25\%$ to $\gamma = 7.21\%$)

Probability distribution of drop displacements

Above γ_{y} : non-Gaussian pdf : ~ *double* exponential tails

Closer to the jamming transition...

Smoother transition, but again 'mobile' and 'supermobile' drops

A Lindemann's criterion for yielding?

Jump size for 'supermobile' drops: ~11% of drop size (irrespective of φ and γ)

Lindemann's criterion for melting a crystal: particles 'jiggle' over ~15% of their size

Yielding transition when all particles become 'supermobile'??

Dynamics: spatial and temporal organization

Temporal correlation: bursts of motion

- Bursts of motion may last hundreds of cycles, but eventually mobile/quiescent drops do exchange
- No clear indication of divergence around γ_v : transition not so 2nd order...

Spatial correlation

 10^{0} b) $\gamma = 12.3\%$ ρ_4° (mm) 7.3% 10^{1} 10⁻¹ a) $\gamma = 20.0\%$ $m_{>}$ 60 30 50 0 10 2040 0.740.65 $\Delta r (\mu m)$ 0.82 0.700.88 10^{0} $\varphi = 0.88 (\gamma_v = 12.7\%)$ 0 5 10 15 20 $\gamma(\%)$

- Spatial correlations extend up to $\sim 10-15$ drops
- ξ_y larger at higher φ : stress transmission important ?
- Behavior around γ_v : varies with φ ...

 $g_4(\Delta \mathbf{r}) \sim \langle \langle \Delta y(\mathbf{R},t) \Delta y(\mathbf{R}+\Delta \mathbf{r},t) \rangle_t \rangle_{\mathbf{R}}$

Conclusions

- Yield transition at a microscopic level quite sharp, as opposed to rheology
- Motion is heterogeneous: 'quiescent', mobile and supermobile particles coexist

• extended spatio-temporal correlations of dynamics, but quiescent/mobile populations eventually do exchange

- A Lindemann's criterion for fluidization of amorphous systems?
- Nature of the transition unclear:
- Close to φ_{J} : smoother $\Delta y(\gamma)$, but no diverging length/time scales aroung γ_{y} - At higher φ : sharp transition, but length/time scales grow significantly

around γ_y

Thanks to...

NYU

Department of Physics

You all!