From shear transformations to depinning transitions

Lattice models for amorphous plasticity

Zoe Budrikis ISI Foundation Torino

Stefano Zapperi IENI-CNR Milano & ISI Foundation Torino

Phys. Rev. E 88, 062403 (2013)

Outline

Lattice-based depinning models for amorphous materials

 \rightarrow Yield as a depinning phase transition

→ Universality class?

 \rightarrow Nonuniversal localization effects

Verifying and moving beyond scalar models

Amorphous materials

Bulk metallic glasses

Johnson group, Caltech; ETH-METPHYS; Oak Ridge National Lab; NPG Asia Materials (2011) 3, 82-90

Amorphous materials

2d particle mixtures

University of Cambridge

Maloney and Lemaitre, Phys Rev E 74, 016118 (2006)

H. Hayakawa: JPSJ Online—News and Comments [December 10, 2008]

Deformation tests

Compression tests

Shear in Couette cell

S. Schöllmann, S. Luding http://www.icp.uni-stuttgart.de/movies/

Lee et al, Appl. Phys. Lett. 91 161913 (2007)

Avalanches in amorphous plasticity

Bulk metallic glasses 1820 (C) Vit 105 1800 Stress (MPa) 1780 2120 2110 2100 3.2 3.0 3.4 3.6 3.8 Strain(%) $D(s) \sim s^{-\alpha}$ $\alpha \approx 1.49$ D(s) 0.1 0.01 0.1 1 10 Sun et al PRL 105, 035501 (2010)

2d particle mixtures

Salerno et al PRL 109 105703 (2012)

Strain localization

Bulk metallic glasses

Sun et al. Appl. Phys. Lett. 98, 201902 (2011)

2d particle mixtures

Maloney & Robbins, PRL 102 225502 (2009) A coarse-grained picture: Lattice-based depinning model

How do amorphous materials deform?

Long-range interactions

Inclusion: plastic strain $\boldsymbol{\varepsilon}$ Matrix: stresses $\boldsymbol{\sigma}$

Linear elasticity \rightarrow have Green's function: $\sigma(r) = \sum K(r - r') \epsilon(r')$

Long-range interactions

Pure shear \rightarrow scalar Greens function

Pointlike Eshelby inclusion in 2d gives:

Eshelby

Collection of STZs \rightarrow local strain map

Modeling: depinning transition

3 ingredients in competition:

Modeling: depinning transition

Metaxas et al, PRL 99, 217208

Buldyrev et al, PRA 45, R8313

Laurson & Zapperi, J. Stat. Mech. (2010) P11014

Modeling: depinning transition

Phase transition:

2 questions: What is universality class? What about localization?

Depinning transition universality class

Internal stresses are long range:

$$K(r) = \frac{\cos(4\theta)}{r^2} \qquad \tilde{K}(q) = \frac{q_x^2 q_y^2}{q^4}$$

Functional Renormalization Group:

If kernel in Fourier space is $\ ilde{K}(q) = q^{lpha}$

Then upper critical dimension is $d_c=2lpha$

For $d > d_c$ mean-field theory holds

$$P(s) = s^{-3/2} \exp(-s/s_0) \qquad ?$$

Depinning transition universality class

But! FRG assumes convex interaction kernel ("no passing" rule)

Talamali, Petäjä, Vandembroucq and Roux, PRE 84 016115 (2011)

2d simulations: Non-universal crossover from mean field

Large scale simulations

Adiabatic driving

Discrete time, instantaneous stress redistribution Pure shear 1024x1024 lattice, periodic BCs

Strain localization

Periodic boundary conditions

Method 1: Fourier -Fourier transform in infinite system -Discretize in Fourier space -Transform back to real space (Talamali et al) Method 2: Image sum -Sum over infinite images in y -Sum over fast-decaying terms in x

Short range interactions: change localization

Short range interactions: non-universal behaviour at small stresses

Short range interactions: non-universal behaviour at small stresses

Localization depends on short-range interactions

Fourier kernel shows stronger localization. Origin of nonuniversal crossover?

Localization depends on short-range

At criticality: universal, not mean field

$$p(s) = as^{-\tau} \exp(bs - cs^2)$$

Not mean field:

$$\tau = 1.35$$

Power spectrum

Bursty activity Power law distribution Universal

$$PS(\omega) \sim \omega^{-1/\sigma\nu z}$$

$$\langle S(T) \rangle \sim T^{1/\sigma\nu z}$$

$$1/\sigma\nu z(MF) = 2$$

Fourier periodized kernel: log10(frequency) 10g10 log₁₀(avalanche size) (power spectrum) -1.85 1 <u>0</u>6 5 4 3 2 log₁₀(1/duration) Image sum kernel: log₁₀(frequency) 10g10/ log₁₀(avalanche size) (power spectrum) 1.85 <u>0</u>_6 log₁₀(1/duration)

Universality class: not mean field!

		2d	MF
Size distribution	au	1.342±0.004	3/2
Size cutoff	$1/\sigma$	2.3±0.05	2
Duration distribution	lpha	1.5±0.09	2
Power spectrum	$1/\sigma \nu z$	1.85±0.05	2

Dimensional reduction?

		2d	MF	1d-LR
Size distribution	au	1.342±0.004	3/2	1.25±0.05
Size cutoff	$1/\sigma$	2.3±0.05	2	2.1±0.08
Duration distribution	α	1.5±0.09	2	~1.43
Power spectrum	$1/\sigma \nu z$	1.85±0.05	2	~1.7

Dimensional reduction?

Avalanches are made of "clusters" with d>1

Tensorial models: Beyond the scalar approximation

Why tensorial models?

stress σ_{xx} due to plastic strain ϵ_{xy}

Local stresses **not** pure shear!
→ plastic yield isn't pure shear

- Generalized loading conditions?

3d simulations

Matrix: stresses σ Inclusion: plastic strain ϵ

Tensorial Greens function $\sigma_{ij}(r) = \sum K_{ijkl}(r-r') \epsilon_{kl}(r')$

Yield: von Mises criterion, radial return Simulate cube with L=32, periodic BCs Same algorithm as 2d scalar model

Tensorial kernel

In 3d: 1/r³ decay, all components anisotropic

Courtesy S. Sandfeld

3d strain distributions (slice along z=0)

Avalanche size distributions – tensorial

Avalanche sizes consistent with scalar model

Conclusions

- Under shear loading, scalar model works well
- Depinning model for plasticity in amorphous materials gives power law distributed avalanches
- The universality class is not mean-field (a new universality class for depinning?)
- Mean-field behavior only occurs far from the transition
- Localization (which depends also on short-range interactions) induces crossover from mean-field
- Paper at: Phys. Rev. E 88, 062403 (2013)